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"Education is, quite simply, peace-building by another name. It is the most effective form of

defense spending there is.” Kofi Annan, former Secretary-General of the United Nations

“No one is born hating another person because of the color of his skin, or his background, or his

religion. People must learn to hate, and if they can learn to hate, they can be taught to love
(...).” Nelson Mandela, Long Walk to Freedom

1 Introduction

Armed civil conflict is a major source of human suffering and obstacle to development, with
political violence killing between 1945 and 1999 an estimated 16.2 million people in 127 civil
wars (Fearon and Laitin (2003)), and an average civil war being estimated to lowering GDP by
about 15 percent (Collier (2008)). While research on conflict has been thriving in recent years,
in many articles the focus has rather been on the impact of exogenous economic, climatic or
geological shocks than on public policies.! As discussed below, especially studies on the role of

education are very scarce and are typically bound to cross-country correlations.

The very limited academic attention to the link between education and civil conflict contrasts
sharply with the various anecdotal accounts, statements of peace negotiators and media reports
praising education as a key long-run solution for curbing fighting.? Maybe paradoxically, this
focus on schooling is shared with armed groups trying to perpetuate fighting and instability
and which deliberately target schools in their attacks, such as Boko Haram (which loosely
translates into "Western education is forbidden") in Nigeria or the Taliban groups in Pakistan

and Afghanistan.?

The theoretical reasons for which one may expect education to be a rampart against civil conflict
and political violence are manifold. As synthesized in De la Briere et al. (2017) (and shown
formally in the underlying model of Rohner (2016)), turning physical wealth into human capital
makes it harder to appropriate, and hence a less attractive "prize", and educated people have
better job market prospects and thus higher opportunity costs of fighting instead of working.
Moreover, schooling (if well designed) can transmit values of tolerance and open-mindedness, and
education has been associated with more rational decision making (Kim et al. (2018)), raising
potentially a person’s awareness of the negative-sum nature of war. In contrast, education
may also potentially foster social unrest and conflict, by increasing people’s aspirations and
means to engage in collective action against the regime in place. Further, when education is

misused as mean of indoctrination it may also stir up inter-group tensions and boost nationalist

1See e.g. the recent survey of Rohner (2017).

2See e.g. Inquirer, 3 February 2013, "Education is the lasting solution to Mindanao war"; Times of India, 22
March 2016, "When extremism stalks the students: Educational solutions to India’s conflict zones".

3See e.g. BBC News, 24 November 2016, "Who are Nigeria’s Boko Haram Islamist group?"; Reuters, 1st
December 2017, "Nine killed as burqa-clad Taliban attack Pakistani college".



sentiments. Which of these potential mechanisms has the strongest effect is to a large extent
an empirical question that still awaits an answer. In the current paper we shall study several

possible channels linking education to political stability.

In particular, we will in what follows carry out an empirical investigation of the impact of
education on armed civil conflict intensity, exploiting a quasi-natural experiment in Indonesia.
We study the impact of the INPRES Program which represents one of the largest and fastest
school construction programs ever implemented. Between 1974 and 1978 over 61,000 new
primary schools were built, amounting to more than doubling the stock of schools. The variation
introduced by the INPRES program has first been exploited by Duflo (2001) to study labor
market outcomes, and has since then been applied to other topics different from conflict, as

discussed below.

While Indonesia is due to its size and social and economic heterogeneity an ideal country for
studying the determinants of conflict, the striking scarcity of statistical studies on political
violence in Indonesia may well be due to the lack of readily available conflict data ranging back
far enough. In particular, existing measures of conflict only start after the end of the INPRES
program implementation, ruling out any difference-in-difference analysis. To overcome this
challenge, we have built our own novel and very extensive dataset of conflict events at the local
district level (Kabupaten in Indonesian), covering all of Indonesia over the period 1955-1994.
Using techniques of web scraping and text recognition, we have drawn on information from
over 820,000 newspaper pages to code variables of conflict events taking place in a given local
district (Kabupaten) and year. Our panel dataset contains 289 districts (Kabupaten) over 40

years, resulting in 11,560 observations.

We carry out extensive sensitivity tests with respect to our novel conflict measure. Reassuringly,
we find that for the years of overlap our coding of conflict and peace coincides in 86 percent
of cases with the well-established conflict measure from GDELT (GDELT (2018)), which is
higher than the level of correspondence between GDELT and other existing conflict data from
ICEWS (ICEWS (2018)) or NVMS (NVMS (2019)) (for which there is no temporal overlap with
our sample period).> Visual inspection (in the Appendix Figure A5) also highlights a parallel
evolution of conflict events for our measure and the GDELT data. Concerns about reporting
bias or other measurement errors are further attenuated by the fact that our point estimates are
very stable when broadening the set of keywords. We also carry out an extensive Monte Carlo
analysis of modifying the keywords used, and show that our results are robust for a variety

of alternative algorithms, methods or news sources. Importantly, a part of our analysis does

4"Conflict" in our context refers to various forms of political violence, including, among others, armed battles,
riots, massacres of civilians, rebellion or insurgency.

®The National Violence Monitoring System (NVMS) data is used e.g. in the recent work of Bazzi and
Gudgeon (2018) and Bazzi et al. (2019).



not require conflict data ranging back before the end of INPRES school construction, and for
this analysis we are able to replicate our findings using alternative datasets, namely GDELT,

ICEWS and NVMS. Reassuringly, our results go through when using these established datasets.

Our main identification strategy relies on a difference-in-difference approach, where we exploit
the impact of sharp changes in education provision, resulting in sharp changes in conflict
measures. As discussed in the previous literature (e.g. Duflo (2001)), and analysed more
formally in the Appendix A.1, the goal of the INPRES program was to achieve a similar
school density throughout the country, implying the construction of more schools in areas with
initially fewer schools and a need to catch up. As discussed below, the initial school density of
a particular district is to a substantial part idiosyncratic. Further, in Appendix A.2 we also
show —using an event study approach— that the districts with more versus fewer new INPRES
schools constructed had a common pre-trend. In particular, being a high- versus low-INPRES
region never had any significant prediction power on violence before the implementation of the

INPRES school construction program from 1974 onwards.

Despite these reassuring patterns on the common pre-trend, we put in place a variety of controls
to filter out potential confounding factors. First of all, we include in all regressions district
fixed effects (there are 289 districts) that control for time-invariant potential confounders such
as e.g. remoteness or topography, and annual time effects (there are 40 years) accounting for
global shocks (e.g. oil price shocks or elections). In addition, in our preferred specifications we
replace the annual time dummies by province-year fixed effects, picking up any shocks taking
place at the level of the 26 Indonesian provinces (think e.g. of the Indonesian government
invading Eastern-Timor in 1975, or stepping-up repression in Aceh in 1990), and also include
district-specific time trends, which filter out any long-run developments (e.g. less developed
areas catching up to more advanced areas). In these most demanding specifications the only
identifying variation comes from the sharp changes following the INPRES school construction
start. Note that we also show robustness of results for controlling for major socio-economic
measures interacted with post-INPRES dummies or time trends, for the other major government
construction program (water and sanitation), for migration, for weather or natural resource
price shocks. We also find that our results are robust for alternative conflict data, for other
econometric specifications, or when restricting the analysis to a series of subsamples. Finally,
we further deepen the analysis, drawing on the synthetic control group approach, allowing to
obtain a very close pre-treatment match for low- and high-INPRES districts. Our identifying
assumption is that when filtering out potential confounders with the aforementioned battery
of fixed effects and controls the intensity of INPRES exposure becomes a plausibly exogenous

variable.

We find that indeed INPRES school construction has led to a statistically significant decrease

in conflict, and that the magnitude of the effect increases over time (which was expected, given

3



that mechanically the numbers of treated pupils at fighting age becomes larger over time). The
effect is quantitatively sizable with a one standard deviation increase in schools built (1.25 more
schools per 1000 school-aged children) resulting in a drop of a quarter of the baseline conflict
risk. Our results are robust to a vast array of robustness checks with respect to estimator,
specification, measures, data construction and potential confounders. As far as heterogenous
effects are concerned, schooling is found to matter both for areas with and without previous
fighting and education reduces fighting across economic, ethno-religious and political types of

conflict.

The analysis of channels of transmissions reveals that the conflict-reducing impact of schooling
is both greater in districts with larger religious polarization and in those with higher economic
returns to schooling. We also show that while societal facts immediately affect the impact of
education and conflict, the economic channels of transmission only start to affect the conflict-
reducing impact of education after some years. Drawing on individual data we further deepen
the analysis of the role of religious tolerance as channel of transmission. We find that education
boosts inter-religious trust and tolerance, as well as local community involvement. Interestingly,
this effect is not driven by changing religious attainment, as we show that exposure to school
construction does not affect religiosity. This implies that the increase in inter-religious tolerance

cannot be mechanically attributed to lower religious observance.

Another mechanism could be that more equal school infrastructure investment (and hence
jobs in the construction industry) may lead to relatively fewer grievances against the state in
districts catching up (with respect to districts having more pre-INPRES schools). However,
this channel seems unlikely, as, first, in the "placebo" analysis of another large-scale public
infrastructure program (on water and sanitation) we do not detect any impact on conflict, and,
second, the increasing effect over time of INPRES school construction is hard to reconcile with
the aforementioned mechanism, for which the main effects may typically occur already when

the schools are still being built.

Finally, we also find that school construction only lowers violent means of resistance, but does
not affect the propensity to engage in peaceful protests.® Put differently, education makes people
being not less but if anything more interested and willing to engage in local collective action,

but pursuing their goals using a peaceful strategy of "voice" rather than "violence".

The remainder of the paper is organized as follows: Section 2 surveys the related literature and
Section 3 provides an overview of the historical context. Section 4 introduces the data used
and Section 5 is devoted to the presentation of the identification strategy and baseline results.

Section 6 displays all robustness checks, Section 7 presents results on heterogeneous effects, and

6This result is, again, hard to reconcile with the aforementioned mechanism of a relative lowering of grievances
in places with more INPRES schools, which would typically also affect non-violent protests.



Section 8 investigates the underlying channels and mechanisms. Finally, Section 9 concludes.

Additional results are relegated to the Appendix.

2 Literature Review

Closest and most relevant to the current paper is the empirical literature studying the effect
of education on conflict and political violence (see the detailed literature survey of stby
et al. (2019)). There exists cross-country evidence that education correlates negatively with
conflict (Collier and Hoeffler (2004); Thyne (2006); Barakat and Urdal (2009); and Ostby and
Urdal (2011)). Yet higher education investments in a given country are not chosen at random
and may correlate with a variety of confounding factors (such as e.g. other policies affecting
conflict).” There exists to the best of our knowledge no paper yet that provides evidence from
a (quasi-)natural experiment allowing for a causal identification of the impact of education
on armed conflict. This is the gap in the literature that we seek to address in the current

contribution.

Somewhat related is also the literature studying the impact of education on individual behavior.
First of all, it has been found that education boosts various forms of civic awakening and
involvement, such as voter participation, acquiring of political knowledge, support for free
speech and rejection of domestic violence and political authority (e.g. Dee (2004); Milligan
et al. (2004); Glaeser et al. (2007); Wantchekon et al. (2014); Friedman et al. (2016)). As far as
the actual engagement in violent activities is concerned, the findings are less clear-cut. Several
studies find that schooling tends to reduce violent behavior. In particular, education lowers
the individual crime propensity (e.g. Lochner and Moretti (2004)) and educational attainment
correlates negatively with an individual’s propensity to enlist in armed rebellion (Humphreys and
Weinstein (2008); Tezciir (2016)). At the same time, there exists also evidence that the education
levels of participants in Hezbollah, Hamas and Palestinian Islamic Jihad militant activities are
—if anything— higher than those of the population average (see Krueger and Maleckova (2003);
Berrebi (2007)). The impact of education on political protests is also ambiguous with Campante
and Chor (2012) and Campante and Chor (2014) finding that education raises the willingness
to participate to political protests — especially when more schooling is not matched by better
employment opportunities — whereas Passarelli and Tabellini (2017) find that primary education

reduces participation in lawful demonstrations, while tertiary education increases it.

While it has also been found that education tends to reduce racism and increase inter-religious

tolerance and the taste for cultural diversity (Hainmueller and Hiscox (2007); Roth and Sumarto

"There is also evidence for the opposite direction of causality, with civil wars driving down human capital
accumulation (Shemyakina (2011); Verwimp and Van Bavel (2013)), and international military rivalries fueling
education investments (Aghion et al. (2019)).



(2015)), this channel is modulated by the educational content. Notably, the school curricula
and teaching practices (such as copying from the board versus working on projects together)
affect the level of government support and nationalism (Cantoni et al. (2017); Clots-Figueras
and Masella (2013)), as well as student beliefs and their human and social capital (Algan et al.
(2013); Cantoni and Yuchtman (2013)).

Two caveats of the aforementioned individual level results are important to keep in mind: First
of all, individual attitudes and behavior do not directly map into armed conflict, as mobilisation
and collective action also matter heavily. Hence, when the goal is —as for the current paper— to
explain armed conflict, it is important to not only investigate how education shapes individual
attitudes and choices, but also the overall effect on actual armed fighting. Second, the ambiguous
results in the literature on individual recruiting and protests may imply that the context matters
and hence it is particularly useful to carry out an analysis of mechanisms and channels of

transmission, as we do in the current paper.

Last, but not least, our work is related to the literature using natural experiments, difference-in-
difference estimations or randomized control trials (RCTs) to investigate the impact of education
on topics other than conflict, such as health and fertility indicators (Osili and Long (2008);
Somanathan (2008); Alsan and Cutler (2013); Breierova and Duflo (2004); Behrman (2015);
Duflo et al. (2015)), labor market consequences (Duflo (2001); Duflo (2004); Akresh et al. (2018)),
self-reported inter-group tolerance (Roth and Sumarto (2015)), bride price practices (Ashraf
et al. (2019)), as well as local governance and public good provision (Martinez-Bravo (2017)).
Out of the aforementioned papers, some draw on the same policy reform (INPRES) in Indonesia
that we exploit in our current contribution (Duflo (2001); Duflo (2004); Breierova and Duflo
(2004); Somanathan (2008); Roth and Sumarto (2015); Ashraf et al. (2019); Martinez-Bravo
(2017); Akresh et al. (2018)). Yet all of these papers study phenomena that are very different

from conflict.

To summarize, as stressed in the survey paper of Ostby et al. (2019), "methodologically
there is considerable potential for careful empirical studies that make the case for a causal
education—political violence relationship (...). None of the studies in the sample employ either
an instrumental variables (IV) approach or RCTs (...) (p. 66/82)." The current paper aims to
address this gap in the literature, by studying the impact of an exogenous variation in schooling
on not only attitudes (i.e. we have results on inter-religious trust) but, crucially, also on actual
armed conflict. For this purpose, the current paper creates a novel measure on conflict events in
Indonesia and identifies channels of transmission through which education shapes the incentives

for working versus fighting.



3 Historical Context

3.1 INPRES Program and Education in Indonesia

In 1973, the Indonesian government launched one of the most ambitious school construction
programs ever enacted, both in terms of speed and scale. Between 1973-1974 and 1978-1979,
more than 61,000 primary schools were built, more than doubling the number of schools in
Indonesia. This led to an average of two schools constructed per 1,000 children aged 5 to 14 in
1971, with enrollment rates among children aged 7 to 12 increasing from 69 percent in 1973
to 83 percent by 1978 (Duflo (2001)). This program, labelled "Sekolah Dasar INPRES", was
designed by the central government, mainly funded by oil revenues, and stipulated that the
number of schooling places to be built had to be roughly proportional to school-aged children
not enrolled before the program (Martinez-Bravo (2017)). When investigating in Appendix
Table A1 the drivers of school construction, we follow an approach analogous to Duflo (2001),
yet construct our measure directly from census data, allowing us to cover more districts. We
find like her that this rule has been followed to a substantial extent, yet that a fair amount of
idiosyncratic variation remains, which according to Duflo (2001) (p.797) "might be explained
by measurement error in the nonenrollment measure as well as by imperfect application of the

general rule".

The newly created schools were of similar size with each school being designed to host on average
three teachers and 120 pupils of primary school age, which is normally between ages 7 and
12 in Indonesia. Importantly, efforts to train more teachers were stepped up in parallel, with
the result that the share of teachers meeting the minimum qualification requirements did not
significantly drop between 1971 and 1978 (Duflo (2001)).

An important question is to what extent school construction in Indonesia actually boosted
years of education achieved and employment opportunities. Interestingly, according to the 1971
Census (IPUMS (2018)) less than 37 percent of the population work in primary sector activities
such as agriculture, fishing, forestry and mining, with the lion’s share of employment being in
the second and third sectors for which schooling typically matters substantially. Indeed, Duflo
(2001) finds that each primary school built per 1000 children has resulted in an average increase
of 0.12 to 0.19 years of education, and a wage increase of 1.5 to 2.7 percent. Accordingly, she has
estimated economic returns to education to lie between 6.8 to 10.6 percent. According to Akresh
et al. (2018), both men and women exposed to the program attain more education and reach
higher living standards, while labor market effects are restricted to men. In Online Appendix
B.1 we estimate for our data and specification the impact of INPRES school construction on

school attendance, finding large effects (i.e. a boost in attendance rates by 6-7 %).

Importantly, the aforementioned individual level effects of INPRES on educational attainment



could result in even larger multiplier effects in our context if i) the marginal students (i.e. the
ones would went to INPRES schools but would not have gone to school otherwise) are on
average more conflict-prone than children who would have gone to school anyways (e.g. children
from better-off families) and if ii) there are spillover effects on other family members (e.g. on
parents, brothers and sisters) and friends that may not be fully accounted for by individual level

estimates.

Interestingly, the effects of INPRES school construction have been found to have spillovers and
persist over time. Akresh et al. (2018) find that "these benefits are transmitted to the next
generation. Children with fathers or mothers who were exposed to the school construction
program obtain more education. Significant effects are observed at all levels of schooling beyond
primary school, but the largest impacts are seen in tertiary education with effect sizes indicating

a 20 to 25 percent increase in the likelihood of the second generation child completing university"
(p. 43).

In terms of educational content of Indonesian primary schools, there is of course an obvious
focus on basic literacy and mathematical skills. Still, as pointed out by Nishimura (1995) and
Roth and Sumarto (2015), the Indonesian school curriculum has reserved some weekly hours
on all education levels for the study of he principles of the state ideology Pancasila, which
includes as main principles the belief in God allowing for freedom of religion / religious tolerance,
humanitarianism, national unity, consultation as well as social justice. These principles have
been kept vague and have been interpreted differently by different rulers, but what stands out
in our context is the importance of advocating religious tolerance, which speaks to some of our

findings, as discussed below.®

Finally, it is important to note that the secular primary school sector —of which "Sekolah Dasar
INPRES" is part— co-exists with the traditional islamic schools (the "madrasah", "langgar" and
"pesantren"), with pupils being able to either fully opt for secular or islamic schooling or for
attending both for some hours per day (see Postlethwaite and Thomas (2014)). An increased offer
of nearby secular schools put in place by the INPRES program may lower the relative influence
of islamic education, and this reduced relative importance of mono-religion schools may in turn
increase the social interaction of pupils from different religions, resulting potentially in higher
inter-religious tolerance.” Related to this, Bharati et al. (2017) show that the INPRES program
has statistically significantly boosted public school attendance, while a negative, non-significant
effect is found of INPRES school construction on private school attendance (which typically

includes islamic education). Thus, while part of the effect of INPRES school construction may

8Note that while the Pancasila prones inter-religious tolerance, its emphasis on religious practice opposes it
to communism, and it has indeed been accused of being linked to anti-communist repression.

9For example, Merlino et al. (2019) find for the US that more interracial contact during childhood boosts
inter-racial relationships and tolerance later in life.



be due to more inter-religious interaction, the lion’s share of the impact appears to be due to

boosted educational attainment.

3.2 Conflict in Indonesia

A former Dutch colony, Indonesia has won independence in 1949.1° Its form has kept evolving,
with the Western segment of New Guinea being officially recognized as part of Indonesia in
1969 by the United Nations, and the former Portuguese territory of East Timor (Timor-Leste)
belonging to Indonesia from 1976 to 2002. After a period of unruly parliamentary democracy,
President Sukarno declared in 1957 martial law and introduced "Guided Democracy". After a
failed coup, his power faded, and from 1967 until 1998, the country was ruled by the authoritarian

regime of Suharto, and is again a democracy since his demise.

Indonesia is located in an archipelago containing 13,466 islands (of which 922 are inhabited),
counts today roughly 260 million people and is characterised by very rich ethnic diversity (with
the largest groups being the Javanese 40.1%, Sundanese 15.5%, Malay 3.7%, Batak 3.6%, and
Madurese 3% (CIA (2018)). There is also a fair amount of linguistic and religious heterogeneity
with over 700 languages used and most major religions being present (Muslim 87.2%, Protestant
7%, Roman Catholic 2.9%, Hindu 1.7%, according to CIA (2018)).

Indonesia has during our sample period 1955-1994 suffered from a substantial amount of conflict,
with its sources and reasons being as heterogenous as the country itself, and where ethnic and
religious cleavages and the scattered archipelago geography may well have played important
roles. Part of conflict events were driven by secessionism, such as separatist rebellion in Aceh
being present since 1953, the rebellion in Western Sumatra and North Sulawesi (Sulawesi Utara,;
North Celebes) in the second half of the 1950s, the Darul Islam movement in West Java in the
1950s and early 1960s, the separatist Free Papua Movement since the early 1960s, armed Maluku
secessionism in the 1950s and 1960s, or the armed resistance of East Timorese during the period
of incorporation into Indonesia following the invasion in 1975. Other political violence was at
least partly motivated by ideology, such as the anti-communist purges following the failed 1965
coup. Moreover, some fighting has been linked to religion, with the (rather secular) Indonesian
governments at various moments clashing with Muslim parties and movements, leading e.g. to
the ban of the Masyumi party in 1960 or the riots in Tanjung Priok in 1984. Finally, many
instances of localized communal or ethnic rioting and fighting have taken place throughout our

sample period.

As displayed graphically in the Appendix Figure A5, there has been a surge in conflict events
in the early 1990s. After the Fall of Berlin Wall in 1989 and the collapse of communism, the

10This subsection builds on the accounts in Brown (2003); CIA (2018); BBC (2018); and Encycl. Britannica
(2018).



domestic and international public opinion started paying increasing attention to President
Suharto’s dismal human rights record and this increasing pressure triggered rising repression and
purges. Simultaneously, in line with the worldwide unfolding of secessions and state break-ups
during this period (e.g. in Eastern Europe and the Balkans), the rising tensions in Indonesia of
the early 1990s were particularly striking in provinces with secessionist movements such as e.g.
Aceh (see the Online Appendix Figure B3). Note that a crucial robustness analysis carried out
in Online Appendix B.17 shows that our results do not hinge on the inclusion of the troubled

1990s or of any particular Indonesian province.

4 Data

Our panel data spans over the period 1955 to 1994 and covers the universe of districts for
which we have information on INPRES school construction, which leaves us with 289 Indonesian
districts. Following Duflo (2001), we use 1993 district boundaries. As shown in Bazzi and

Gudgeon (2018), over the time period of our study the number of districts remains fairly stable.!!

4.1 Construction of Conflict Variables from Newspaper Data

As described in more detail in Online Appendix B.2, the lack of suitable existing conflict
measures spanning over the time period of our sample has led us to engage in data collection and
in the construction of a novel conflict measure. Our approach to construct a novel geo-referenced

dataset of conflict-related events in Indonesia consists of five steps.

The first step was to find a high-quality newspaper that is digitally available and covers a long
enough time period. As discussed in more detail in Online Appendix B.2, the Sydney Morning
Herald (thereafter, SMH) fulfills all our requirements, and has the advantage of being Australian
— a country with traditionally quite detailed news coverage of its neighbor country Indonesia.
Founded in 1831, the SMH is the oldest continuously published newspaper in Australia and
currently has a readership of roughly half a million people (Morgan (2018)). As discussed in
Appendix B.2, it is unlikely to suffer from any particular bias, and its digital archive allows us
to construct a database of violent events in Indonesia between 1955 and 1994.'2 Importantly,
over this time span no SMH editions are missing, which eliminates an important, often present
source of non-classical measurement error of news aggregator datasets (e.g. GDELT (GDELT
(2018)) has increased its resolution from yearly to monthly to daily over time, and also NVMS (

NVMS (2019)) has had a sharp increase in coverage and precision in more recent years). As

HTn particular, Bazzi and Gudgeon (2018) document an exponential increase in re-districting from 2001
onwards, i.e. 7 years after the end of our sample. Note also that our results continue to hold when restricting
the sample to the pre-1989 period, when hardly any district creation took place (see Online Appendix B.17).

12The start and end dates are determined by the SMH archive which spans from January 1st, 1955 to February
2nd, 1995.
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shown below, our results are also very similar if we use an alternative media source, i.e. the

Canberra Times — an other serious, yet smaller news outlet.

After having identified the newspaper, the second step was to perform a first selection of the
articles related to Indonesia. In particular, we searched over 820,000 articles available in SMH
archive and downloaded all those containing at least once the word “Indonesia” (the resulting

set of articles was of around 34,000).

In a third step, we used natural language processing algorithms to analyse the content of all
articles, storing all sentences where at least one conflict related term was present.'® Finally,
in the (fourth and fifth steps), we started out using a Named Entity Recognition algorithm to

identify all locations referred to, and then matched locations to geo-coordinates.'*.

When confronting our conflict measure drawn from SMH to the existing conflict variable of
GDELT (2018) we find, as discussed in Appendix A.11, that in 86 percent of cases our conflict
variable takes the same values as GDELT (with which there is a temporal overlap for 1979-1994).
Importantly, also visual inspection of Appendix Figure A5 confirms the parallel evolution of our

measure and GDELT for the years of overlap.'®

As discussed below and explained in much detail in the Online Appendix B.2, we have performed
a wide set of robustness exercises to assess the validity of our conflict measure, i) focusing on
an alternative newspaper (the Canberra Times), ii) using an alternative python algorithm to
identify locations, iii) applying alternative matching scores for geo-identification, and finally,
iv) exploiting three alternative conflict databases (covering a shorter time period) to replicate
our analysis (GDELT (2018), ICEWS (2018), and NVMS (2019)). Our results are found to be

robust to these alternative ways of constructing the conflict measure.

4.2 Other Data Used

Our education measures are based on the number of schools constructed between 1973-1974 and
1978-1979 per district by the INPRES program — as described above in section 3. In particular,
our main education variable is given by the number of schools constructed under the auspices of

the INPRES program per 1000 children of primary school age in a given district in 1971. The

13In the main analysis we focused on: "conflict" "battle" "assault” "kill" "riot" "attack" "turmoil” "unrest"
"warfare" "solider" "army" "insurgent" "terrorist" "disorder" "revolt" "massacre" "strike" plus all their variations.
We also performed extensive robustness checks narrowing or widening the set of terms.

MFor illustration, fighting events captured include e.g. the ones mentioned in the following newspaper sentences:
“Fierce fighting was reported to have broken out last Wednesday in Macassar on the island of Celebes after rebels
attacked an army patrol” (30/12/1957); “Indonesia has admitted that unrest occurred near Manokwari recently,
and that troops were used to quell the trouble” (28/08/1965); or “The riots were confined to one area of Tanjong
Priok, a densely populated and predominantly poor suburb of northern Jakarta, close to the port” (15/09/1984)

15Note that we cannot directly confront our data to ICEWS (2018) and NVMS (2019), as the SMH is only
available until 1994, while ICEWS starts in 1995, and NVMS (partial) coverage begins in 1998.
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raw data on this is taken from Duflo (2001).

Further, the variables of the index of religious polarization, returns to schooling and other
district-level variables have been constructed using the 1971 Population Census conducted by
the Central Bureau of Statistics of the Republic of Indonesia (IPUMS (2018)).'6 We focus on
1971, as this is prior to the INPRES intervention. For constructing the polarization measure at
the district level we apply the polarization formula described in Montalvo and Reynal-Querol
(2005) to the religion share data of the 1971 census.

Individual-level variables on religious tolerance and community participation were retrieved
from the 5th wave of the Indonesian Family Life Survey (IFLS) (Strauss et al. (2016)). Finally,
district borders for Indonesia at the time of the INPRES program were obtained from the Digital
Atlas of Indonesian History (Cribb (2010)).

4.3 Descriptive summary statistics

Table 1 displays district-level descriptive statistics for the explanatory variable and the dependent
variables (further descriptive statistics for the other variables are presented in Online Appendix
B.3). Our sample consists in slightly less than 300 districts over 40 years. On average, 2.35
schools per 1,000 children aged 5 to 14 were constructed under the INPRES program in less
than six years. While all districts have been exposed to the program, the intensity of new school
constructions varies widely across regions. Further, using data from our preferred source (i.e.
Sydney Morning Herald), the probability of observing at least one conflict in a given district
and a given year is around 8%. This number increases to 13% when we use a wider set of
conflict-related terms (see Appendix A.10). The conflict probability is lower when we consider
another, smaller newspaper (i.e. Canberra Times). The lower conflict probability obtained with
this second data-source is consistent with its incomplete coverage of our time period of interest.

Finally, the last line reports event probabilities obtained when we combine the two sources.

Table 1: Descriptive statistics

Variable Mean Std. Dev. Min. Max. Obs.

(# Schools / # Children); 2.35 1.257 0.591 8.598 289
Conflict Episode;:

Sydney Morning Herald [SMH]  0.077 0.267 0 1 11,560
SMH - Broader Definition 0.13 0.336 0 1 11,560
Canberra Times [CB] 0.06 0.238 0 1 11,560
SMH and CB Combined 0.105 0.307 0 1 11,560

SOURCE: School construction data from Duflo (2001). Conflict data is obtained using the procedure described in Section 4.1.

16For constructing the religious polarization measure, we apply the (simplified) polarization formula of Montalvo
and Reynal-Querol (2005), namely Polarization; = 4% ,[pi* * (1 — pi)], where pi is the proportion of members
of some group i. This measure is bounded between 0 and 1.
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5 Empirical Strategy and Main Results

5.1 Identification strategy

INPRES has been widely acknowledged as one of the fastest and largest-scale school construction
program worldwide to date; and when it started in 1973 it boosted education much more in
some districts than in others. In our analysis below we shall exploit the differential increase in
education across districts and study whether more intense school construction under INPRES
has led to a relative decline of conflict with respect to other districts less affected by INPRES.!7

This framework implies a series of econometric challenges:

Different underlying conflict risk at district level — Districts with initially fewer
schools may have a propensity for conflict that is generally higher or lower. Such level

effects are picked up by the fact that we include district (kabupaten) fixed effects.

National or regional policies — A potential confounder could be other policies or
programs taking place at the same time as INPRES. To address such concerns, any general
nationwide policies are filtered out by annual time effects. Further, we replace in most
specifications the general annual time effects with province-specific annual time dummies
(i.e. we include Province * Year fixed effects). In a robustness check we also control for the

intensity of exposure to the water and sanitation program which took place simultaneously.

Different time trends for districts — Another concern could be that places with ini-
tially fewer schools may have another pre-trend or may catch up with more urban
neighborhoods independently of the INPRES program. First of all, as far as a common
pre-trend is concerned, as shown in the Appendix A.2, before the start of the INPRES
program in 1974 there was a common trend of conflict events in districts with a high
initial school density (where few additional schools were needed under INPRES) compared
to districts with initially only few schools (and where INPRES heavily engaged in school
construction to meet the target of homogenous school density nationwide). Most impor-
tantly, we further include in many specifications linear district time trends, which would
pick up any mechanical convergence or divergence effects of different types of districts.
Note also that we have an extensive robustness section, where the synthetic control group

approach is exploited for constructing identical pre-trends.

Different shocks in districts — Similarly, one could worry about economic or non-

1"Note that our setting has as unit of observation the district year, which differs from studies linking INPRES to
individual outcomes (see e.g. Duflo (2001)). The collective action nature of armed conflict (and the impossibility
to know the birth years of fighters) required us to focus on the district year level, which may lower the precision
of the treatment variable, but allows to control for time trends at the district level and may better account for
social multiplier effects. Below we will also investigate a series of outcomes (i.e. inter-religious trust) at the
individual level.
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economic shocks hitting different areas differently in the same years of INPRES im-
plementation. Imagine for example that by accident places with more INPRES school
construction are affected differentially by some economic shock hitting Indonesia during the
same period. First of all, in a robustness table we interact the post-reform years with the
initial pre-reform school enrollment rates in 1971. This is an important robustness check,
as the planing of the number of schools to build was based on these 1971 enrollment rates,
and when conditioning on these, the intensity of INPRES school construction becomes
a random variable (see Appendices A.1 and A.5). Hence, differential shocks in places
with more INPRES school construction would have to be due to pure coincidence. We
also interact in robustness checks the post-INPRES period with a battery of other socio-
economic covariates from the 1971 census. Further, we take into account the increasing
effect of school construction over time (given that the total number of additional schooling
years enabled by INPRES increases over time, as discussed above). Hence, in order to
confound the impact of INPRES, such other potential shocks would also have to show the

same inter-temporal pattern of intensification.

5.2 Correlates of school construction and pre-trend

The goal of the INPRES school construction program has been to achieve a homogenous level
of school enrollment across Indonesia, and indeed the intensity of school construction under
INPRES in a given district has been claimed to be essentially driven by the pre-INPRES school
enrollment rate of school-aged children (in places with initially too few schools, more schools
were built; see Duflo (2001)). In order to check this formally for our data, we carry out in
Appendix A.1 an analysis of the determinants of school construction. In particular, we regress
the number of schools built under INPRES on pre-INPRES enrollment rates of school-aged
children and a variety of pre-INPRES socio-economic covariates. We find in Table Al, as
expected, that INPRES school construction is to a quite substantial extent determined by the
gap in pre-INPRES enrollment rates of school-aged children and by the number of school-aged
children, but unrelated to a wide array of socio-economic variables. We show in Appendix A.4
that we obtain consistent results when using the gap in pre-INPRES enrollment rates or the
predicted level of INPRES school construction as explanatory variables of conflict. Further, we
find below that all our results go through when controlling for various socio-economic factors
(see Appendix A.5).

While the fact that INPRES school construction does not correlate with a series of potential
confounders is reassuring, we can also directly check the common pre-trend assumption, using an
event study methodology. This is what we do in Appendix A.2, finding support for the common
pre-trend assumption. Notice that we also carry out below in Appendix A.3 an extensive

synthetic control group analysis where by construction the synthetic control group has a parallel
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pre-trend. Our results are robust to the synthetic control group analysis.

5.3 Econometric specification

In terms of the variable construction, our unit of observation is the district-year and for our
empirical analysis we combine district-year-level violence data with district-level data on the
number of new schools built between 1973-1974 and 1978-1979 (district-level data from Duflo
(2001)). The dataset covers 289 districts (Kabupaten in Indonesian) across 26 provinces over the
period 1955-1994.

Applying the logic of difference-in-difference settings, we exploit both the variation over-time
(i.e. difference pre/post) and over-space (i.e. difference in the intensity of the programme across

regions). We start with the standard specification

#Schools Built
#Children

#Schools Built
#Children

Conflicty = a+ B4 + BoPost — 1978, + 3 x Post 1978; + €,

where the variable Con flict; is a dummy that takes a value of 1 if a violent event was observed
in district 7 in year t. The variable (#Schools Built/#Children); represents the number of
primary schools constructed under the INPRES program per 1000 children in primary school

age.

The dummy Post — 1978, takes a value of 1 for the first year when we expect the program to
deploy major effects, as 1978 is the year when school construction is complete and it is also
roughly the first year when the pupils first enrolling in the program 5 years earlier would be old
enough to engage in violent activities (e.g. the report of Refworld (2001) states that 'Indonesia’s

troubled provinces are said to use child soldiers as young as 12").

Further, the specification includes the interaction of (#Schools Built/#Children); and Post-
1978,. This interaction term is our variable of interest, as we expect school construction under
INPRES to deplete effects after 1978, and the more so the more schools were built under the

program.

We include in all specifications district fixed effects (FE;) and year fixed effects (F'E;). This
means that both g; and [y will be absorbed by our fixed effects. Thus, the first baseline

specification of column 1 of Table 2 that we estimate becomes

Schools Built
Conflicty — a + Irochools Bult o 1078, + FE, + FE, + ey,
#Children

%
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Standard errors are clustered at the level of the 289 districts in all regressions (unless indicated
otherwise). Note that in addition in column 2 of Table 2 we include a vector of district-specific
linear time trends, while in column 3 of Table 2 we include both a vector of district-specific

time trends as well as Province times year fixed effects (FE,).

The aforementioned specifications correspond to the simplest difference-in-difference design that
only distinguishes between years before the treatment deploys effects (i.e. pre-1978) versus
the years where the treatment is active (i.e. post-1978). This specification has the virtue of
simplicity, but it does not take into account that the number of children treated by INPRES
and reaching an age where they could get possibly enrolled in violent activities is increasing
mechanically every year. As discussed above, typically the age where involvement in violent

activities becomes conceivable in Indonesia is about 12 years (see Refworld (2001)).

Put differently, while INPRES starts to deploy effects from 1978 onwards (which is when the first
INPRES intake reaches "fighting age"), we expect its impact to become larger every year, both
in terms of the extensive margin (i.e, the number of INPRES pupils reaching potential "fighting
age" increases), as well as in terms of the intensive margin (i.e. while enrollment in violent
activities is conceivable at the age of 12, it becomes more likely in later teenage years).'® For this
reason we focus in columns 4-6 on a specification allowing for an increase in the treatment effect
over time, by interacting the variable (#Schools Built/#Children); with a variable defined as
Numbers of years since 1978 (i.e. a variable that until 1978 takes value 0, in 1979 takes value 1,

in 1980 takes value 2, and so on). In particular, in column 4 of Table 2 we estimate the equation

#Schools Built
#Children

Conflicty = a+ (3 x Years since 1978, + F'E; + FE; + €,

i

and in columns 5 and 6 of Table 2 we again add a vector of district-specific time trends as well
as Province times year fixed effects (F'E,:). Note that the variable of Years since 1978, will be
absorbed by the vector of time fixed effects.

While this second specification of columns 4-6 accounts for the increasing treatment intensity
over time, it imposes a linear increase in treatment. Hence, in order to allow for a non-linear
change in treatment effects over time we shall in columns 7-9 of Table 2 perform the initial
difference-in-difference specifications of columns 1-3, but distinguishing three time windows for
the period after 1978: i) [1979-1984], ii) [1985-1989] and iii) [1990-1994].

18 Actually, one may expect the effect to stop increasing further after some period of time, which is indeed
what we see in the early 2000s when using GDELT data (results available upon request). Given that the sample
of our baseline analysis stops in 1994, unsurprisingly for our sample period the effect ever increases.
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5.4 Baseline Results

Table 2 reports the baseline results of the specifications mentioned above. In the simplest
difference-in-difference specification of columns 1-3 in all columns the coefficient of interest has

the expected, negative sign and is statistically significant.

Focusing on our preferred, most demanding specification of column 3, we can see that the
conflict-reducing impact of education is quantitatively substantial by any standards. As depicted
in Table 2, the mean conflict likelihood in a given district year is 0.08, and the mean numbers
of INPRES schools built per 1000 school-aged children is 2.35. As shown in column 3, building
one more school per 1000 school-aged children reduces the conflict likelihood by almost -0.02,
which is a quarter of the baseline conflict risk. Expressed in standard deviations, one standard
deviation change in school construction (around 1.25 schools per 1,000 children) leads to a 8%

standard deviations lower conflict risk every year after 1978.

As shown in columns 4-6, there is indeed evidence for the expected increasing effect of INPRES
school construction over time. The coefficient of interest is of expected sign and statistically
significant in all columns, and is quantitatively very sizable. The quantitative impact becomes
even more striking when taking into account the increasing effect over time. For example,
consider for our preferred specification of column 6 the impact of one standard deviation greater
INPRES school construction (i.e. around 1.25 schools more per 1,000 children) on the conflict
likelihood in the end-of-sample year 1994, which is 16 years after its completion. This effect of
INPRES amounts to roughly -0.06 [=-0.003*16*1.25], which corresponds to a decline of 0.23

standard deviations of conflict risk.
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Moving to columns 7-9, we can see that indeed the impact of INPRES school construction gets
larger over time, with again the impact of school construction in the third period [1990-1994]

amounting in our preferred column 9 to more than half of the baseline risk of conflict (0.08).

6 Robustness Analysis

Below are described the various robustness checks carried out to assess the sensitivity of the
main results displayed above in Table 2. In the current section we shall limit ourselves to a
short account of the robustness analysis, with most of the robustness tables and further details

being relegated to the Appendix.

6.1 Robustness to Synthetic Control Method

As we show in Appendix A.2, the common pre-trend assumption is supported by the data. Still,
to go one step further, and make sure that the pre-reform trend of conflict events is indeed —by
construction— always parallel in the areas with more versus less INPRES school construction,
we apply in Appendix A.3 a transparent method of choosing counterfactual units: the synthetic
control method (as applied recently in e.g. Abadie and Gardeazabal (2003), Abadie et al. (2010),
Billmeier and Nannicini (2013), Saia (2017)). As shown in Appendix A.3, the synthetic control
method analysis confirms our findings that INPRES school construction has resulted in a decline

in conflict.

6.2 Robustness to controlling for the impact over time of socio-

economic district characteristics

If the last subsection was targeted at addressing concerns about the common pre-trend assump-
tion, there may remain worries about particular shocks hitting after 1978 (by coincidence) the
kinds of districts mostly affected by INPRES school construction. Given that we also document
the dynamic increase of the impact of school construction over time, potential confounders
would need to be characterized by the same dynamic profile of increasing effects, which further
restricts the kinds of confounders that could affect our results. Still, below we shall focus on
an array of socio-economic variables and interact them with the "post-1978", resp. "years since
1978" variables, which would pick up shocks related to particular socio-economic characteristics.
All results are displayed in Appendix A.5. In particular, in Table A3 we control for the impact
of general school enrollment, public sector employment, weight of primary industries, rural
population share, employment rates and religious polarization. We find that our results are

robust to the inclusion of these additional control variables.
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6.3 Robustness to controlling for the water and sanitation invest-

ment program

Finally, in Appendix A.6 we also control for the incidence of water and sanitation program
being implemented at a similar point of time as the INPRES school construction program. This
is an important robustness check, as first of all this program could represent a confounding
factor and, secondly, the water and sanitation program was the second biggest large-scale
investment program of the central government in this period (Akresh et al. (2018)), and hence
any potential (mechanical) bias —due e.g. to reporting bias— should typically also be present
for this second major investment program. Reassuringly we find that the estimated impact
of school construction is unaltered when adding this further control, and we don’t detect any

impact on conflict of the water and sanitation program.

6.4 Robustness to controlling for migration

Another potential worry could be biases arising from migration. If migration is uniform
and similar across districts and over time, it merely results in attenuation bias, making us
underestimate the true effect of school construction. More worrying would be a situation where
migration levels are large and potentially correlated with district characteristics. A priori, we
expect this not to be a major issue. Duflo (2004) concludes that migration levels are not very
large and does not detect any biases linked to selective migration in the context of her study.
Akresh et al. (2018) find that the INPRES school construction program did affect migration flows,
but only to a quite small extent. In particular, they find that "the school construction program
increases migration rates by 0.7 and 0.8 percentage points respectively (...), [that] the increase
in migration is concentrated in shorter distance moves within—rather than between—provinces"
(p. 16), and that "the school construction program does not increase the share of people living

in urban areas. They do appear to move to more valuable and larger housing" (p.18).

Nevertheless, we control for migration and urbanization patterns. In particular, we use Indonesian
census data to construct the share of population in a given district having immigrated from
another province, as well as the share of the population living in rural areas. The data
construction is discussed in detail in Appendix A.7. As shown in Table A6 in Appendix A.7,

the inclusion of these controls does not affect our results.

6.5 Robustness to climate and oil rents shocks

An important other source of potential confounders to consider are climate and natural resource
shocks. Hence, in Online Appendix B.6 we investigate whether climate shocks such as tempera-
ture or rainfall variation could have been confounding factors for explaining the observed levels

of conflict. We similarly study the role of oil world price shocks in extraction areas (following an
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identification strategy akin to Berman et al. (2017)). For all the variants of such shocks studied,

we find the impact of school construction to remain very stable and statistically significant.

6.6 Robustness to the number of secondary schools

Another potential concern could be that maybe places with fewer INPRES schools constructed
may experience systematically different patterns of secondary school construction. One could
imagine that maybe they receive “in compensation” a greater number of new secondary schools.
In the Online Appendix B.7 we investigate this, and control for the number of junior and senior

high schools. It turns out that our results remain virtually unchanged.

6.7 Robustness to alternative econometric choices and specifications

The fact that we cluster the standard errors at the level of treatment implies a conservative
assessment of statistical significance. To assess the sensitivity of our statistical inference, in
Online Appendix Section B.8, we display the significance levels for alternative levels of clustering.
In particular, Table B9 allows for standard errors to be clustered at the level of the 26 Indonesian
provinces (although this number of clusters is arguably below the conventional minimum levels),
while Table B10 allows for standard errors to be two-way clustered at the district and year

levels. In both cases the coefficients of interest remain statistically significant.

To further address remain concerns about inflated statistical inference we alter below the level
of aggregation. In particular, as advocated by Bertrand et al. (2004), below in Table 3 as
alternative specification we collapse the time dimension into "pre-" versus "post-" treatment.
This specification does not allow to study the increase of treatment effects over time, which is the
main reason why it is only used as robustness check and not as main specification. Reassuringly,

this very different econometric specification yields very similar results as our main specification.

Further, given that in our main specifications we have a limited dependent variable, it is useful
to check the sensitivity of our results when we abandon the underlying assumptions of the linear
probability model and estimate a conditional logit specification instead. This is what we do
in Online Appendix B.9. It turns out that we continue to find also for the conditional logit
estimations a statistically significant conflict-reducing impact of the number of INPRES schools
built.

Another alternative econometric specification that we implement is to move to a higher level of
aggregation, at which some key political decisions may be taken. In particular, we collapse the
data to a panel at the province-year level. As shown in Online Appendix B.10, even for this

more coarse level of aggregation we find a strong and robust conflict-reducing impact of school
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Table 3: Robustness: Alternative econometric specification

Dummy Conflict;r (log) Years with Conflict;
Dep. Variable: (1) (2) (3) (4)
(# Schools / # Children); -0.0866***  -0.0942*** -0.0938*** -0.0904***
(0.0151)  (0.0215) (0.0214) (0.0291)
Conlflict Prior to INPRES Program:
Dummy Conflictyr_, 0.458*** 0.395%**
(0.0512)  (0.0596)
(log) Years with Conflictyy_, 0.620%** 0.5817%**
(0.0532) (0.0610)
Observations 289 289 289 289
R-squared 0.297 0.382 0.487 0.540
Province FEs No Yes No Yes
Sample Mean 37 37 .49 .49

NoTE: The unit of observation is a district ¢ in period T', where T represents the period [1979-1994], and T — 1 corresponds to the
period [1955-1978]. LPM estimates are reported in the first two columns and the dependent variable is a dummy that takes a value
of 1 if a violent event is observed in district ¢ in the period [1979-1994]. OLS estimates are reported in the last two columns and the
dependent variable is the (log) number of years with conflict episodes observed in district ¢ in the period [1979-1994]. The variable (#
Schools/# Children); corresponds to the number of primary schools constructed under the INPRES program per 1,000 school-aged
children in a district i. The conflict data was constructed using the Sydney Morning Herald, following the approach described in
Section 4.1 and in Online Appendix B.2. Robust standard error are reported in parenthesis. Statistical significance is represented by
* p <0.10, ¥ p < 0.05, *** p < 0.01.

construction. 9

Moreover, to address potential concerns that having three subperiods in part of the analysis
may be somewhat ad hoc, we also display in Online Appendix B.11 the replication of the results
of columns 7-9 of our baseline Table 2 when slicing the sample period in two, three, four or five

subperiods. We continue to find school construction to have an increasing effect over time.

Finally, as a further sensitivity test in Online Appendix B.12 we also exploit the annual school
construction levels, exploring the variation across districts between building more schools at the
beginning versus at the end of the INPRES period. We find that our results remain very similar

when we account for this further source of variation.

6.8 Robustness to using alternative conflict measures

As a first step to investigating the robustness to other conflict measures, we use the same data
as in the main analysis, but focus in Appendix A.8 on the intensive instead of extensive margin

of violence. While school construction turns out to have a strong effect on the extensive margin

9Gimilarly, in Online Appendix B.5 we move to a higher level of temporal aggregation (5-year-periods instead
of annually). We still detect a strong and statistically significant conflict-reducing impact of INPRES school
construction.
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of whether or not conflict emerges, we also document that the INPRES program has reduced
the intensity (i.e. frequency) of conflict episodes, as measured by the number of days, weeks
or months with coverage of conflict.? Similarly, when using the average length of newspaper
articles covering an event as proxy for the incident’s importance (intensity), we again find that
schooling leads to not only fewer conflict incidents but also to more minor events (triggering

shorter articles).

As a next step, we investigate robustness with respect to the set of keywords used. First of all,
we carry out in Appendix A.9 a Monte Carlo analysis performing 1000 draws where we drop
each time a third of our keywords. It turns out that even in this very demanding sensitivity test
that (mechanically) drives down the number of conflict events detected, we continue to find a

robust conflict-reducing effect of school construction.

Further, to investigate concerns about our findings having been obtained "by chance', we carry
out in Online Appendix B.13 a placebo exercise where we randomly assign treatment in 1000
placebo datasets with the same average conflict likelihood as the "true" data. The results of this
placebo exercise highlight how extremely unlikely it would have been to obtain our results "by

chance".

We then study in Appendix A.10 the impact of extending (rather than narrowing down) the
keywords used as well as relying on an alternative newspaper source, the Canberra Times, for
constructing our conflict measure. Using the extended list of keywords (displayed in Appendix
A.10) may potentially reduce the risk of missing out on some conflict event but may well
substantially increase the number of "false positives'. Similarly, Canberra Times has a series
of downsides with respect to the Sydney Morning Herald, as explained in Online Appendix
B.2. Still it is important to assess the robustness with respect to these dimensions, and it is
reassuring that in Appendix A.10 we find very similar results for the broadened keywords and

the alternative newspaper source.

Related to this, in Online Appendix B.14 we assess the robustness of our main findings when
requiring multiple conflict-related keywords to be present in a given newspaper article for coding
the corresponding district year as having experienced conflict. The estimates obtained are

statistically significant and of similar magnitude as our baseline results.

Further, we also carry out in Appendix A.11 a robustness analysis with respect to existing data
from three datasets, GDELT (GDELT (2018)), ICEWS (ICEWS (2018)) and NVMS (NVMS
(2019)). All of these datasets only cover time periods after INPRES school construction, which

rules out any difference-in-difference analysis (and which is the reason why we had to collect

20Importantly, these conflict intensity measures do not use information on the number of newspaper articles
in a given period referring to conflict, hence attenuating concerns about double-counting (i.e. several articles
referring to the same event).
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and build our own conflict data in the first place). Still, the data allows us in Appendix A.11 to
first show the high correspondence of our measure with the existing conflict data for the years
of overlap, and then to replicate the analysis of the effect of school construction increasing over

time (see e.g. the columns 4-6 of the baseline Table 2). When doing so in the Tables A13, A14

and A15 we reassuringly find similar results as in the baseline regressions.

6.9 Robustness with respect to geolocation

We also carry out additional sensitivity exercises with respect to the construction of our conflict
measure. In particular, the results for alternative reclink scores adopted in the geographical
matching of locations are reported in Online Appendix B.15, while Online Appendix B.16
implements an alternative mechanism for retrieving location information from newspaper
reports. Reassuringly, in all cases our results are robust to these alternative ways of data

construction.

6.10 Robustness to outliers and sample composition

Finally, in Online Appendix B.17 we investigate whether our results are driven by observations
from a particular province or by a particular time period. We display graphically the evolution of
fighting events by province over time and perform a regression analysis where we drop one-by-one
observations from all 26 provinces in the sample, as well as modify the sample duration. Our

results are found to be robust to these sensitivity exercises.

In this same Online Appendix, we also show that our results continue to hold when removing
places with low-INPRES school construction, resp. high attendance in 1971. This addresses
concerns that our results could have been driven by a surge in violence in areas that felt left out
by the INPRES program.

7 Heterogeneous Effects

Before analyzing the potential mechanisms at work, we shall in the current section present a
series of findings with respect to heterogenous effects of our main estimates. First of all, it
is interesting to see what kinds of events may be driving our results. For investigating this,
we distinguish between keywords referring to disputes about "economic", "ethno-religious" or
"political" dimensions.?! As displayed in Table 4 below, our main findings are similar when
focusing on any of theses three dimensions. These results could indicate that education matters

throughout a wide range of different dimensions of conflict. They should however be interpreted

n n

2IThe keywords used for constructing the "economic", "ethno-religious", and "political" conflict variables are
listed in Online Appendix B.18.
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with caution, as of course the absence of evidence of any heterogenous effects does not imply
necessarily evidence of absence of any differences, as it may also be that our keyword distinctions

are to coarse to pick up differential effects.

Table 4: Heterogeneous effects: Type of conflict events

All Conflict Economic Ethnic-Religious Political

Dep. Variable: Conflict Episodey (Type) (1) (2) (3) (4) (5) (6) (7) (8)
(# Schools / # Children); * Post-1978, -0.0173%** -0.00780%* -0.00831** -0.0118%**

(0.00610) (0.00353) (0.00389) (0.00430)
(# Schools / # Children); * Years since 1978, -0.00305%** -0.00182*** -0.00219%** -0.00257***

(0.000705) (0.000488) (0.000572) (0.000565)

Observations 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.506 0.506 0.456 0.456 0.487 0.488 0.493 0.494
District FEs Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Time Trend Yes Yes Yes Yes Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
Sample Mean 077 077 047 .047 .056 .056 .064 .064

NOTE: The unit of observation is a district ¢ and year ¢t. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all
columns. The dependent variable in columns 1-2 is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year ¢. Estimates presented in columns 3 and
4 have as dependent variable a dummy of economic conflict events only, while columns 5 and 6 have as dependent variable a dummy of ethno-religious conflict events, and columns
7-8 political conflict events. The variable (# Schools/# Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged
children in a district 7. The dummy Post-1978; takes a value of 1 for the years after the first year when we expect the program to deploy major effects (which is when the first
INPRES cohort reaches the critical age for being recruitable for fighting — see discussion in Section 5.3). The variable defined as Years since 1978, is a variable that until 1978
takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The conflict data was constructed using the Sydney Morning Herald, following the approach described in
Section 4.1 and in Online Appendix B.2. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, **
p < 0.05, ¥* p < 0.01.

Another dimension of possible heterogeneity is whether results are different between districts
previously not exposed to political violence and other districts where conflicts have occurred
already in the period before the INPRES school construction. While in the former subset of
districts conflict events could be seen as a new onset of fighting, in the latter subset of district
any eruptions of violence may indicate the continuation of hostilities. The results of this sample
split are shown in Table 5. Interestingly, we find that school construction under INPRES

decreases the conflict likelihood both in districts with and without previous turmoil.

In the Online Appendix B.19 we study further heterogeneous effects, finding that our results
hold both in rural and urban areas, as well as both in the presence and in the absence of the
practice of bride prices. Reassuringly, we also find in this Online Appendix that our results
are driven by the districts with low or intermediate primary school attendance in 1971 (where
the potential for catching up was largest) compared to the top tercile in terms of initial school

attendance.

8 Channels and Mechanisms

After having studied above the impact of education on conflict, in the current section we shall
investigate potential channels and mechanisms accounting for the conflict-reducing impact
of education. The interest in understanding channels of transmission goes beyond academic

curiosity, as knowing how and why education matters may unveil important implications for
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Table 5: Heterogeneous effects: Conflict onset

Districts with Conflicts pre-1979 Districts w/o Conflicts pre-1979

Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6) (7) (8)
(# Schools / # Children); * Post-1978, -0.0230%*  -0.0292* -0.00722%*  -0.00850%*

(0.00901) (0.0163) (0.00300)  (0.00338)
(# Schools / # Children); * Years since 1978, -0.00238***  -0.00316** -0.000771%F  -0.00224***

(0.000804)  (0.00153) (0.000361)  (0.000819)

Observations 4,840 4,840 4,840 4,840 6,720 6,720 6,720 6,720
R-squared 0.309 0.490 0.309 0.490 0.095 0.342 0.096 0.345
District FEs Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Time Trend No Yes No Yes No Yes No Yes
Province x Year FEs No Yes No Yes No Yes No Yes
Sample Mean 172 172 172 172 .009 .009 .009 .009

NOTE: The unit of observation is a district ¢ and year ¢t. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported
in all columns. The dependent variable is a dummy that takes a value of 1 if a violent event was observed in district 7 and year ¢. Estimates presented in the first
(resp., last) four columns are obtained restricting the sample to all districts where conflicts have (resp., have not) occurred in the period prior to the INPRES school
construction. The variable (# Schools/# Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children in
a district i. The dummy Post-1978; takes a value of 1 for the years after the first year when we expect the program to deploy major effects (which is when the first
INPRES cohort reaches the critical age for being recruitable for fighting — see discussion in Section 5.3). The variable defined as Years since 1978; is a variable that
until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The conflict data was constructed using the Sydney Morning Herald, following the
approach described in Section 4.1 and in Online Appendix B.2. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance
is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

policy. For example, if we were to find any beneficial effects of education confined to act through
economic incentives maybe it would be possible to achieve similar pacifying effects more cheaply,
e.g. by promoting on the job training instead of school education. In contrast, if the main impact
of education were to be related to fostering trust and understanding, again one could consider
alternative policies delivering the same benefits. Finally, a conclusion of education affecting the
scope for violence both through economic as well as societal channels of transmission may a

priori make it more complicated to find a set of alternative policies achieving similar results.

8.1 Economic returns versus religious cleavages

We shall first carry out a "big-picture" comparison of potential economic versus societal forces
at work. To do so, in Table 6 we start in column 1 by replicating the baseline specification of
column 3 of the main Table 2, but interacting our usual variable of school construction with

two variables that proxy for economic and societal channels of transmission.

In particular, we add the interaction of our explanatory variable of school construction with the

1.22 We expect a greater scope for education

level of religious polarization at the district leve
to matter through increased religious tolerance in districts where there is indeed substantial
religious polarization. Put differently, if education were to deploy effects mostly in religiously
homogenous places this would be harder to reconcile with mechanisms linked to religious

tolerance than if the lion’s share of education impact takes place in highly polarized places.

The second interaction term that we include is with a measure of returns to schooling. As we

22We build this variable using the data from the Indonesian population census of 1971 (IPUMS (2018)), and
applying the widely used polarization measure described in Montalvo and Reynal-Querol (2005).
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cannot draw on reliable pre-treatment wage data, we need to rely on proxies for wealth/income
from survey data. Concretely, using data from the Indonesian population census of 1971 (IPUMS
(2018)), we compute the relative economic advantages from having completed primary school
(which is the case for roughly 45 percent of our sample) at the district level.?* We focus first
on the likelihood of living in a brick house (which is a superior housing quality capturing
economic success), drawing on the answer to the survey question "Dari apakah dinding luar
dibuat? (eng: Exterior wall material). In particular, our district-level returns to education

measure corresponds to the formula

Bricks(NoPS)
. o Bricks(NoPS)+NoBricks(NoPS)
RoFE|Bricks| = — Brichs(PS) ;
Bricks(PS)+NoBricks(PS)

where Bricks(NoPS) is the number of respondents in a district with brick housing and no
completed primary school, and NoBricks(NoPS) is the number in a non-brick house without
completed primary school. The definitions of Bricks(PS) and NoBricks(PS) are analogous, but
simply for completed instead of non-completed primary school. Note that one advantage of
this particular functional form is that the value of the measure is well-defined even when the
value of Bricks(NoPS) is zero, i.e. when in a given district nobody without completed primary
school lives in a brick house. In districts where this negative number is closer to zero, education
has greater economic benefits in terms of housing quality. This variable is informative about
economic mechanisms of transmission. If e.g. we systematically observe that education has the
greatest pacifying effects in districts where it yields large economic benefits, it is more likely
that economic mechanisms (such as education increasing the opportunity cost of fighting) are at

work than if economic returns are unrelated to the pacifying force of education.

As shown in column 1 of Table 6, both our proxies for economic and societal mechanisms have
the expected negative signs and are statistically significant. In particular, we find that schooling
in general decreases the scope for conflict, but this effect gets magnified in religiously polarized
areas and in places with large economic returns to education. Put differently, while education
curbs conflict everywhere, it particularly does so in religiously diverse districts, as well as in
places where living standards are relatively sensitive to the level of schooling achieved. In the
goal of investigating the sensitivity of the returns to education proxy used, column 2 carries out

a similar exercise as column 1, but replaces the returns to education variable based on brick

23Tn our sample we focus on all adults, defined as individuals of at least 21 years of age, which corresponds
to the 95th percentile of the age distribution of individuals still attending school. Put differently, this sample
restriction allows us to have almost exclusively individuals in the sample who are not currently enrolled in
schooling. If we use the full sample or we drop all individuals attending school our main results are similar.
Corresponding tables are reported in Online Appendix B.20.
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housing with another measure of educational returns based on entrepreneurship. The variable
construction is analogous, simply the question used is not the one mentioned above but instead
"Bekerja sebagai apa?" (eng: Occupation Status). The results are similar, but now the returns

to education proxy is not statistically significant.

In column 3 we use as other alternative returns to education proxy the simple average of the
bricks and entrepreneurship measures used in the columns 1 and 2, respectively. Again, the
interaction term with religious polarization keeps being negative and robustly significant, while
the returns of education proxy has the expected negative sign but narrowly misses statistical
significance. Similarly, in column 4 we make use of principal component analysis (PCA) to
creating a joint measure of education returns englobing both the bricks and entrepreneurship
data. Again, the interaction term of this alternative variable has the expected negative sign but

misses the statistical significance threshold.

28



TO0 > d gys ‘GO0 > d 4y ‘010 > d  £q poIuSsaIdal ST 00UROPIUSIS TRo1IsTIRYG "sisorjuared U pal1odel o1 [9A9] 1OLIISIP ST} 18 PIISISI]D 10110 PIRpUR)S
ISNqoY *(8-G SUWN[OD W) *g/F] 9ULS §4DIL VM PUe (- SUWN[0D UL) §/FT-1504 YIM UOWDINPS 0] UNIFY PUR UOYDZLID]OJ sn0pb1ay JO STUOTIIRIDIUT ST} S9[RLIRA 01100 (pojrodarun) se apnut op\ ‘g d Xipuaddy suruQ ut
pue ) WOTYaG UI paqrdsep yoeordde o) SUIMO[[o] ‘ppnsofy bupuiopy fioupfig o911 SUISN PIIONIISTOD Sem BIRD 1OIJU0D ST, "(1X0) ST UI s[re1ap [euonippe 99s) ((810z) SINNAI) SUSU9)) TL6T o) Suisn pondurod 91om SOISLIUT UOIRINDD
0} sumjax pue uorezirejod snorSey Tootps Arewrtid poja[duiod SUIARY WOI] [9AS] JOLIISIP O} 1€ SISRIURAPE DTUIOTOD DAIVR[I ) SIIRIIPUI (0} ) UOWDINPS 07 UIngdY S[RITRA O} SBOISM ‘2 JOLNSIP UT UoIezIre[od SNOTSIol
JO 9A0] 01} 0} SPUOdSILIOD UOYDZLID]OF §N0IGIY O[CRLILA O], "0 OS PUR ‘g ON[RA SO} ()QGT Ul ‘T ON[RA SOy} GLET Ul ‘() ON[RA SR} QLGT [IIUN JRYY O[RLIRA ® ST 9/ F] 90UIS §.UDIL Se POUYIp o[(RLIeA o, *(¢'G UOIJI0G Ul UOISSNOSIP
995 — SurySy 10§ A[qeIMNINAI Futoq 10 0Fe [RIIILID A} SOYDRII 100D SHYJNI 1STY oY) UayMm ST Yorym) spoope ofewr Lodop 0y wrerdod o1y 100dxo om UM IRIA ISIY 9} IdIJe S1RA O} I0] T JO ONRA ® SO} g/ F]-1504 Awwumnp o],
"2 9OLSIP © UL UDIP[IYD page-[oorps o0 0d urerdord SHYJIN] Y3 OPUn pajoniysuos spooyos Lrewid Jo soquinu o) syuasoxdol ‘(uauppy) #/5100yog #) dlqeLrea o], 7 1edk pue 2 JOLIISIP Ul PIAIISO SBM JUIAD JUIOIA ® JT T JO onfes
® soye) yer) Awwunp ® st a[qerre juapuadap o], ‘sumnjoo [[e ut pajiodor are soew)se INJT F661-GS6T Portad o) 1040 seouta0ad gz SSOI0R SIOLIISIP G]T $10A00 d[dures oy ], ‘7 1oL pue ¢ JOLIISIP ® ST UOIIRAIOSCO JO JIUN oY, :ALON

8L0° 6L0° 920° 180" 8L0° 6L0° 90" 180" ueo]y odureg
w®> m@.ﬁ m@\ﬂ m@xﬁ W®> mmxﬂ m@.ﬁ m®> mmh Hm®> X @oiﬁwozﬁm
w®> m@.ﬁ m@\ﬂ m@xﬁ ww.% m@xﬂ m@.ﬁ m®> ‘mv:@zﬂﬁ wﬁi,ﬁ Hﬁ@ﬁﬁH o@@@gmuwoigmﬁg
SOA SOA SOA SOA SOA SOA SOA SOA SHA TedX
SOA SOA SOA SOA SOA SOA SOA SOA SHA ILISI(J
9€G°0 61570 0£5°0 €580 7E8°0 L1G°0 62570 redal porenbs-y
070‘8 08701 0706 0876 070‘8 08701 0706 0876 SUOIRAIOS( ()
(098000°0)
*xx£€200°0- tdasgur] pup syouLg Foy duwoy) ouLig % QL6 2IULS SADIL % %:w.%wﬁb # \ 510028 %Q
(126000°0)
+xV2200°0- “daagus] puv syo1Lg oy abvioaty « 'QLET doULS SUDIL % (uaappyn # \ 510028 %Q
(¥6¥000°0)
#x£0100°0~ Y[+ daaqugg] woypINp 03 WInIY 4 IQLET 2oULS SUDIK . H(uaippyy # / s100yd8 #)
(LP100°0)
%*hﬂﬂODOu ﬁ\mu\w.ﬁm.\ Ec.ﬁsu:ﬁm 0} EQEQMN * w%hmw ULs m&@w\ﬂ % QQ@&%?Q@ w“m \ &QQQD% %.C
(2¢2000)  (1€200°0)  (€€200°0)  (LL200°0)
4xG7800°0 4546620007 ey TTLO00~ 5542920070~ Wu0pvz1A)0g SNOWNY 4 'QLET PULS SUVIL 4 Huduppy) # / s100yog #)
(12800°0)
9110°0- “dasgus] puv syouLg oy dwoy) ouLid  OL6T-150d 4 \:Eﬁ.ﬁb # \ 5100Y2G %C
(89800°0)
££900°0- Fdougug] pup syorg {OY Y . QLETHS0d  (uppyD # / s100y08 #)
(7L¥00°0)
ﬁﬁﬁoo.cu ﬁ\.&m,xﬁm.\ §0.ﬁ503%m (o] @EFSMN % ﬂm&%w#wom % %ﬁm&ﬁ?@b .%m \ &QOQQ»@ %x
(1210°0)
£9£20°0- [s3j001g]] woypOnpE 03 wnIRY 4 '9LETISOd « HudppyD # / s100yog #)
(e0z00)  (1120°0)  (2610°0)  (¥120°0)
%GLE0°0"  #+ELF00-  «TGE0°0-  4G6E0°0- wonDzLID|Oq SO L 'QLET-IS0d 5 (uaipp) # / S100ydS #)
(1€8000°0)  (2220000)  (022000°0)  (606000°0)
#5598000°0" 559600007 55x89%00°0~  55xG1€00°0- QLET 2ouas S0 ‘(udaply) # / $100ydG #)
(88200°0)  (12900°0) (98200°0) (19900°0)
168000~ 96600°0-  TG900°0-  4xEET0°0- BLET-150d 5 (uaippy) # / sjooyg #)

(8) (2) (9) (g) ¥)

(¢) (c)

(1)

Haposidsy 101fuoy) 21qviuvA da(q

S[UURTD [BIDID0S PUR DIWOUOIF]

WSTURYDDA 19 O[qR],

29



Columns 5 to 8 perform analogous regressions, but focusing on the second main specification of
our baseline specifications. We replicate the baseline specification of column 6 of the main Table
2, but interacting our usual variable of school construction with the aforementioned proxies for
economic and societal channels of transmission. This specification allows to understand up to
what extent the effect of INPRES school construction is increasing over time, and the interaction
terms enable us to perceive the dynamic evolution of economic and societal mechanisms. We find
that not only religious polarization, but also the various proxies for economic returns to schooling

increase substantially and robustly the long-run conflict-reducing pattern of education.?*

To compare the size of the coefficients of the interaction terms with polarization versus with
economic returns to education, we can focus on the estimates of our preferred column 7 of Table
6. Consider the differential effect on the conflict probability after 10 years of one additional
school in a district with 75th percentile versus median religious polarization. One more school
reduces the conflict risk in the more polarized district by around 3 percentage points. Now we
perform the analogous exercise for the differential effect of being in a district with returns to
education at the 75th percentile versus at the median, which yields an additional 0.6 percentage
point drop in the conflict risk for one more school in the district with higher returns to schooling.
Thus, while both higher religious polarization and greater economic returns to education magnify

our baseline effect, we find a quantitatively larger impact for the former than for the latter.?

Taken together, this means that while higher religious polarization immediately magnifies any
effects of education reducing fighting, the importance of economic returns takes longer to kick
in. In the very short-run, the modulating effect of economic returns to education is not very
big and only borderline statistically significant, while in the long-run economic forces have a
robust impact on boosting the conflict-reducing effect of education. This novel result is further
substantiated in Figure 1 below which displays the evolution of the coefficients of interest when
slicing our sample in three subperiods. While in the first two subperiods economic returns to
education do not matter greatly, in the last subperiod they become a more important modulating

factor of the impact of school construction on conflict.

In further robustness and sensitivity exercises, reported in Online Appendix B.20, we assess

whether the aforementioned results on channels and mechanisms are robust to alternative ways

24Using the heterogeneous effects coefficients of column 7 of Table 6 and the district specific measures of
returns to education and religious polarization, we find that in 92 percent of districts (i.e. 240 out of 262)
education has overall the expected negative (conflict-reducing) sign. Interestingly, in the remaining 22 districts
the lack of conflict-reducing effect is driven by their very low economic returns to education (i.e. when attributing
to them the sample average returns to education, for all of them their district-specific coefficient of education
would also turn to a negative (conflict-reducing) sign). This result that very low economic opportunities can
jeopardize the pacifying effect of education is in line with the recent results of Campante and Chor (2012) and
Campante and Chor (2014).

25The effect for religious polarization is computed as -.00799 * 10 * 0.343 = -.027, while for returns to education
the effect is computed as -.00224 * 10 * 0.260 = -.0057.
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Figure 1: Impact of economic returns and religious cleavages over time
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NoTE: The figures plot the evolution of the coefficients (# Schools / # Children); * Religious Polarization; and (# Schools / #
Children); * Return to Education; over three subperiods [(1979-1984), (1985-1989) and (1990-1994)]. Estimates reported in Panel
A and Panel B are those obtained using the specifications displayed in columns 3 and 4 of Table B32 in Online Appendix B.20,
respectively. Estimates reported in the right figure of Panel A (Panel B) are those obtained using as measure of returns to education
the simple average (PCA) of bricks and entrepreneurship measures. Religious polarization and returns to education measures were
computed using the 1971 Census (IPUMS (2018)) (see additional details in the text).

of constructing the conflict variable, finding that the results remain very similar.

Overall, we take the findings of Table 6 and Online Appendix B.20 as evidence that both
economic as well as societal channels of transmission may be at work when it comes to linking
schooling to a reduction in fighting. While the impact of education on curbing conflict in
religiously polarized places is immediate, the importance of economic returns to schooling takes

some years to invigorate the effects of school construction.

8.2 How education may attenuate religious tensions

In the last subsection we have found that education may well work through both economic
channels of transmission (i.e. a higher opportunity cost of conflict), as well as through societal
mechanisms, i.e. by making religious polarization matter less. In the current subsection we shall
now investigate in greater depth how education may be able to reduce the scope for religious

polarization to fuel fighting.

In particular, we make use of the wave 5 of the IFLS Survey, conducted in 2014 in 228 districts,
to investigate the effects of the INPRES program on both i) religious tolerance and ii) community

participation.?® In doing so, we focus on answers provided by individuals born between 1945

260Qur analysis in this subsection is related to Roth and Sumarto (2015), who study —using alternative survey
data— the impact of school construction on the answer to the question "What is your opinion on an activity done
in your neighborhood by a group of people which are from a different ethnicity, resp. religion". In line with
our results, they conclude that schooling fosters inter-group tolerance. However, we find their results hard to
interpret, given how vague the underlying survey question is formulated, as a person’s opinion on an unspecified
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and 1972. Our identification strategy relies on the fact that the date of birth and the region of
birth jointly determine exposure to the school construction program. All children born in 1962
or before did not benefit from the program since they were too old to enroll in newly constructed

schools when the program started.?”
As main dependent variables we use the following three survey questions:

» Religious Tolerance I - Trust: Question: Taking into account the diversity of religions in
the willage, I trust people with the same religion as mine more. [0-Strongly agree, 1-Agree,

2-Disagree, 3-Strongly disagree]

o Religious Tolerance II - Marriage: Question: How do you feel if someone with different

faith from you marry one of your close relatives or children? [0-Strongly objected,
1-Objected, 2-No Objection, 3-No Objection at all

o Community Participation - Arisan: Have you participated in Arisan in the last 12
months? [0 - No, 1 - Yes]

Note that "Arisan' is an Indonesian form of a rotating savings and credit association (roscas)
(see e.g. the discussion in Miguel et al. (2006)). While participation to roscas is partly driven by
purely economic forces, such community credit groups have typically still be seen as associated
with social capital and strong local ties (see Putnam et al. (1993), Miguel et al. (2006), Anderson
et al. (2009)).

The aforementioned Trust and Marriage variables are used as continuous variables ranging from
0 to 3, treating the scales of the survey questions as cardinal. We also code a dichotomous
version of these variables (TrustD and MarriageD), with values 0-1 being coded as 0, and values
2-3 coded as 1). The results for these dichotomous measures are very similar to the main results,

and are relegated to Online Appendix B.21. The "Arisan" (roscas) variable is a dummy (0-1).

We estimate the effect of the INPRES program on the above-mentioned variables (Survey,,)

using the econometric specification

#Schools Built
#Children

Survey, = a+ x Born after 1962, ..+ FE; + FE. + €,,

nic
i

"activity" may well depend on the nature of the actual activity, with e.g. economic competition being different
from social interaction.

2TNote that this individual-level identification strategy follows the one adopted by Duflo (2001). The only
difference is that Duflo (2001) included the cohorts 1950-1973, while we extend the pre-treatment sample by five
years in order to balance the number of treated and control individuals. Crucially, our results are very similar if
we restrict like Duflo (2001) the sample to post-1950 individuals, as shown in Online Appendix B.21.
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where (#Schools Built/#Children); represents the number of primary schools constructed
under the INPRES program per 1,000 children in district ¢, the variable Born after 1962 is a
dummy that takes value 1 if the individual n of cohort ¢ was born after 1962 in district ¢, and

the vectors of F'E; and FE. represent district and cohort FEs, respectively.

Table 7 below displays the results. We find that having been exposed to more intensive INPRES
school construction (i.e. being born in a place with more INPRES schools built and being part
of a birth cohort affected by it) results in an increase in all three aforementioned indicators. Put
differently, we find that being exposed to more intensive school construction boosts religious
tolerance, as measured both in terms of trust (column 1) as well as marriage approval (column
2) with respect to people of different faith. Similarly, we also find that more intensive school
construction exposure leads to a greater propensity to participate to "Arisan"' community credit
groups (roscas) (column 3). These results prove robust when replicated in columns 4-6 with
gender, ethnicity and religion fixed effects. Overall, the findings of Table 7 highlight that indeed

education may be able to reduce religious intolerance and foster local community interaction.

These results are robust to a series of sensitivity tests relegated to Online Appendix B.21, where
we vary the coding of the survey answers, where we modify the measurement of religiosity and

where we modify the starting date of the cohort window applied.

Crucially, in Online Appendix B.21 we also investigate whether this tolerance-boosting effect
of education is confined to particular religions. We find that this is not the case, and that for
all religions in the sample (Islam, Christianism, Others) we find that education contributes to

increasing inter-religious trust and tolerance.

Table 7: Societal channels: Religious tolerance and local community involvement

1) (2) (3) (4) (5) (6)

Dep. Variable: Trust,  Marriage,  Roscas, Trust,  Marriage,  Roscas,

(# Schools / # Children); * Born after 1962, 0.0344%%  0.0321%%  0.0189%%* 0.0322%*  0.0263**  0.0166%**
(0.0140)  (0.0127)  (0.00665) (0.0137)  (0.0114)  (0.00607)

Observations 10,521 10,522 11,229 10,521 10,522 10,461
R-squared 0.107 0.179 0.154 0.134 0.223 0.237
District FEs Yes Yes Yes Yes Yes Yes
Cohort FEs Yes Yes Yes Yes Yes Yes
Gender FEs No No No Yes Yes Yes
Ethnicity FEs No No No Yes Yes Yes
Religion FEs No No No Yes Yes Yes

NoTE: The unit of observation is an individual n born in district i. The sample covers all individuals surveyed in the Wave 5 of the IFLS
SURVEY, born between 1945 and 1972. OLS estimates are reported in all columns. Trust, and Marriage, variables are used as continuous
variables ranging from 0 to 3, treating the scales of the survey questions as cardinal. Roscas,, is a dummy that take a value of 1 if the individual
participated to a arisan community group over the previous 12 months. Additional details on survey variables are provided in the text. The
variable (# Schools/# Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged
children in a district 4. The variable Born after 1962, is a dummy that takes a value of 1 if a given individual n was born after 1962 in district
1. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, **
p < 0.05, **¥* p < 0.01.
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An important remaining question is whether the reason education manages to attenuate religious
tensions is due to e.g. inculcating values of tolerance or, more trivially, that education may
simply make religion matter less. Put differently, if educated people become less religious in
general (as found e.g. for Canada by Hungerman (2014)), there is (mechanically) less scope for
religious conflict. Table 8 below allows us to answer this question. In particular, we explore
in column 1 whether the program affected the level of religiosity of the individuals surveyed
in the wave 5 of the IFLS Survey, drawing on the question: "How religious are you" [3 - Very
Religious, 2 - Somewhat religious, 1 - Rather religious, 0 - Not religious]. We again focus in
the main analysis on the continuous scale, but show robustness in Online Appendix B.21 to
a dichotomous version of the religiosity measure. As a second measure, in column 2 we also
draw on the question “How many times do you pray each day?" [coded as 1 if the answer was
"Given times", and as 0 for "Not every day" "Do not practice']. The columns 1-2 are replicated

in columns 3-4, but including also gender, ethnicity and religion fixed effects.

Interestingly, the results of Table 8 overall indicate that religious beliefs are not affected by
school construction, which may be interpreted as evidence that the education-induced decrease
in religious intolerance is not purely due to educated people losing their faith, but could possibly
be driven by a genuine increase in tolerance. These findings could be related to the fact that
education content in Indonesia contained some teaching of the principles of the state ideology
Pancasila that stresses at the same the time the importance of religious faith as well as promotes

religious tolerance (see Nishimura (1995)).

Table 8: School construction and religiosity

(1) (2) (3) (4)

Dep. Variable: Religiosity, Prayers, Religiosity, Prayers,

(# Schools / # Children); * Born after 1962,,  0.0206* -0.00547 0.0180 -0.00531
(0.0120)  (0.00474)  (0.0130)  (0.00478)

Observations 10,495 9,292 10,495 9,292
R-squared 0.093 0.074 0.104 0.088
District FEs Yes Yes Yes Yes
Cohort FEs Yes Yes Yes Yes
Gender FEs No No Yes Yes
Ethnicity FEs No No Yes Yes
Religion FEs No No Yes Yes

NoOTE: The unit of observation is an individual n born in district ¢. The sample covers all individuals surveyed in the Wave 5 of the IFLS
SURVEY, born between 1945 and 1972. OLS estimates are reported in all columns. Religiosity, is a continuous variable ranging from 0 to
3, treating the scale of the survey question as cardinal. Prayers, is a dummy that takes a value of 1 if the individual prays every day. The
variable (# Schools/# Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged
children in a district i. The variable Born after 1962, is a dummy that takes a value of 1 if a given individual n was born after 1962
in district i. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by *
p < 0.10, ** p < 0.05, *** p < 0.01.

In the Online Appendix B.22 we study the impact of schooling on relations between ethnic
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instead of religious groups. We detect no effect of schooling on ethnic tolerance, which is in line
with the particular emphasis of the state ideology Pancasila on religious tolerance and freedom,

which is not analogously present for inter-ethnic relations.

8.3 Voice versus violence

As found above, education tends to boost civic involvement. Hence a natural question to ask is
if education may make people express grievances and discontent in different ways, providing
educated citizens with both the incentives and means for voicing discontent in a peaceful manner
rather than resorting to violence. As discussed above, the existing evidence linking education
to the propensity for participating to protests is mixed, with Campante and Chor (2012) and
Campante and Chor (2014) finding that education boosts the willingness to protest, while
Passarelli and Tabellini (2017) find the opposite effect. In what follows, we do not only restrict
our focus to protests per se, but study the relative predominance of peaceful versus violent

forms of contesting authority.

In particular, we start by creating a measure of peaceful protest from newspaper articles of the
Sydney Morning Herald, proceeding analogously as for the construction of our conflict measure,
but making use of a different set of keywords.?® Reassuringly, we find a very large overlap with
the protest measure of GDELT for the years when both variables are available: In 95 percent
of cases, both measures agree on the coding of a given district-year of having or not having a
peaceful protest. All details of the data construction and analysis and additional results are

presented in Online Appendix B.23.

Note that besides studying the interesting trade-off between voice and violence this analysis
also serves the purpose of a "placebo"-type robustness check: Imagine that for some reason
(mechanically) newspapers were to cover after 1979 differently places with higher INPRES school
construction (remember that general time invariant differences in reporting are controlled for by
the district fixed effects). Such hypothetical biases from news coverage could to a similar extent
also apply to other events such as peaceful protests and we would expect similar results as for
violent events. In contrast, finding different results for peaceful and violent activities would a

priori be reassuring, and make this type of mechanical reporting bias less likely.

As shown in Table 9, it turns out that school construction reduces violent conflict events
(columns 1-2), but only has a small, not statistically significant effect on peaceful protests and
demonstrations (columns 3-4). Taking "voice" and "violence" together in the same specification,

by coding as dependent variable the difference between peaceful and violent events, we find that

n n n n

28In particular, we used the following keywords: "protest”, "demonstration”, "march", "gather", "manifestation”,
"picket", and exclude for the construction of our non-violent protest measure all articles that contain also conflict
related terms in the same sentence, resp. elsewhere in the text (see Online Appendix B.23 for a detailed
description).
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Table 9: Conflict events vs pacific events

Panel A
Conlflict Events Pacific Events A Pacific - Conflict
Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6)
(# Schools / # Children); * Post-1978; -0.0127%FF -0.00173%** -5.73e-05  -0.00202 0.0127***  0.0153*
(0.00448) (0.00610) (0.00306) (0.00641) (0.00389)  (0.00887)
Observations 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.345 0.506 0.279 0.405 0.183 0.325
District FEs Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend No Yes No Yes No Yes
Province x Year FEs No Yes No Yes No Yes
Sample Mean .08 .08 .02 .02 -.06 -.06
Panel B
Conflict Events Pacific Events A Pacific - Conflict
Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6)

(# Schools / # Children); * Years since 1978, -0.00146*** -0.00305%** -6.54e-05  4.39e-05 0.00140***  0.00309***
(0.000421)  (0.000705)  (0.000230) (0.000430)  (0.000347)  (0.000762)

Observations 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.346 0.506 0.279 0.405 0.184 0.326
District FEs Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend No Yes No Yes No Yes
Province x Year FEs No Yes No Yes No Yes
Sample Mean .08 .08 .02 .02 -.06 -.06

NoTE: The unit of observation is a district ¢ and year ¢. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are
reported in all columns. In columns 1 and 2 the dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year ¢.
Columns 3 and 4 have as dependent variable a dummy that takes a value of 1 if a peaceful protest was observed in district ¢ and year ¢. In columns 5 and 6
the dependent variable is the difference between peaceful and violent events observed in district i and year t. The dummy Post-1978, takes a value of 1 for
the years after the first year when we expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being
recruitable for fighting — see discussion in Section 5.3). The variable (# Schools/# Children); represents the number of primary schools constructed under the
INPRES program per 1,000 school-aged children in a district ¢. The variable Years since 1978, is a measure that until 1978 takes value 0, in 1979 takes value 1,
in 1980 takes value 2, and so on. The conflict and protest data was constructed using the Sydney Morning Herald, following the approach described in Sections
4.1 and 8.3. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05,
¥ p < 0.01.

education statistically significantly increases this wedge between peaceful and violent means
of opposition to the state (columns 5-6). Thus, in a nutshell, we indeed find that schooling
tends to move resistance from violent to more peaceful modes of expression. This result is
confirmed by the supplementary analysis performed in Online Appendix B.23 where we replicate
the analysis for alternative variable construction algorithms and alternative datasets. We always
find that the impact of schooling on peaceful protests is quantitatively small and sometimes
non-significant, and that the relative importance of conflict with respect to peaceful protests
goes down in the aftermath of more INPRES school construction. This is again consistent with

the conclusion that education pushes modes of opposition from violence towards voice.
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9 Conclusions

This paper provides novel evidence on the causal impact of education on conflict. We have
exploited in a difference-in-difference specification the variation in school construction under
the INPRES program from 1974 to 1978 in Indonesia. In order to be able to analyse its effects
on conflict, we had to collect our own dataset on conflict at the level of the 289 districts in
Indonesia over the period 1955-1994. Applying up-to-date web scraping and text recognition to
information from over 820,000 newspaper pages, we have built a novel and very extensive data

set on political violence in Indonesia.

We have found that school construction in Indonesia has indeed had a statistically significant and
quantitatively substantial conflict-reducing impact which survives extensive robustness checks
with respect to estimator, specification, measures, data construction and potential confounders.
We detect that schooling matters both for areas with and without previous fighting and that

economic, ethno-religious and political conflict is reduced alike.

In terms of the underlying mechanisms our results indicate that both larger religious polarization
and greater economic returns to schooling magnify the beneficial effects of education, and that
while societal mechanisms appear at work right away, economic factors start impacting mostly
after some years. Studying individual survey data on inter-religious trust, local community
involvement and religiosity, we find that education leads to higher trust and tolerance of other
religious groups. We do not detect any impact on religiosity, ruling out that higher inter-religious
trust and tolerance could be mechanically driven by a drop in religious beliefs. We also detect
that schooling leads to a shift from violence to voice. Taken together, our findings suggest that
education expansion may yield substantial benefits in terms of conflict prevention that go well

beyond the narrow economic human capital gain of schooling.

We very much encourage further research on this topic. While the results of schooling expansion
on reduced civil conflict in Indonesia are very telling, it would be important to analysis the
impact of schooling in very different contexts. In particular, our context features the impact
of primary school expansion with a curriculum focused on secular teaching of basic skills and
promoting —if anything— religious tolerance. The benefits of school construction may be different
for secondary or tertiary schooling or in settings where the curriculum promotes values of
inter-group intolerance and defamation. Hence, an under-studied topic in the literature seems to
be the impact of educational content on the scope for civil conflict. Further, as for development,
the impact of education on interstate wars could be potentially different than for civil wars
(while opportunity costs reduce in both cases incentives for fighting, in the case of interstate
wars large conflicts necessitate advanced fighting capabilities which may be built up more easily
in more developed and educated societies). Thus, also studying the impact of education on

international wars seems an important gap in the literature.
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A Appendix
A.1 Empirical Strategy and Main Results: Balancing Covariates

As discussed above in section 5.2 we study in what follows the potential determinants of the
intensity of school construction under INPRES. The official rule for INPRES school construction
corresponded in building more schools in places with initially fewer schools to equalize the school
density across different regions in Indonesia (see Duflo (2001)). To investigate this further, we
carry out a regression analysis of determinants of INPRES school construction. As shown in
Table A1, the only correlates of school construction that are found to strongly determine the
numbers of schools built are the gap in the pre-INPRES enrollment rate of school-aged children,
as well as the number of children having primary school age. Note that we replicate these
findings in Table B4 in Online Appendix B.4 where as dependent variable we have —instead of
the logarithm— the absolute number of INPRES schools constructed, leading to very similar

results.

As displayed in the following Appendices A.4 and A.5 below, the results of the current Appendix
Section A.1 can be used for a series of robustness checks. In Appendix A.4 we will make use of
the variables of the gap in the pre-INPRES enrollment rate of school-aged children and of the
number of children having primary school age to build a measure of the predicted number of
INPRES schools constructed which will in turn be used as an explanatory variable of conflict. In
contrast, in the following Appendix A.5 we will run our baseline specifications, but controlling

in addition for the other socio-economic variables of Table Al.

A.2 Empirical Strategy and Main Results: Common Pre-Trend

In this subsection we document the common pre-trend of places with fewer versus more INPRES
schools constructed. In particular, we carry out an event study of the effect of INPRES schools
over time (relying on 4-years rolling windows). Remember that children would typically attend
newly constructed INPRES schools between the ages 7 and 12 (Duflo (2001)), which means
that around 1984 the last "INPRES pupils" leave primary school and it may be more than 10
years later when parts of them finish university. Hence we expect increasing effects of INPRES
on education (and hence conflict) until the end of our sample period (1994) with any potential

ceiling being reached after 1994.

Figure A1 below displays the results of the event study. It is found that before the construction of
INPRES schools, the areas with more INPRES schools constructed did never display statistically
significantly different levels of violence, and —if anything— any potential difference became smaller
before the beginning of the INPRES program.
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Table Al: Balancing covariates - Dep. variable: (log) # INPRES schools

Dep. Variable: (log) INPRES Schools; (1) (2) (3) (4) (5) (6) (7)
(log) Children 5-14; 0.727*¥% (.732%¥%  (0.73210F Q. 771FFF  (.731%**  0.740%**  0.741FF*
(0.0239)  (0.0277) (0.0277) (0.0242) (0.0244) (0.0284)  (0.0284)
(log) (1 - School Attendance [5-14]); 0.401F#%  0.405%*F*  (0.402%*** 0.393%**  (0.403**F*  (.399%***
(0.0751)  (0.0973)  (0.0979) (0.0758)  (0.0972)  (0.0978)
(log) Enrollment Population; 0.0501 0.0489 0.0639 0.0626
(0.0700)  (0.0703) (0.0707)  (0.0709)
(log) Public Employment; 0.290 0.289 0.349 0.349
(0.332)  (0.332) (0.334)  (0.335)
(log) Rural Population; 0.106 0.0957 0.126 0.114
(0.178)  (0.181) (0.179)  (0.181)
(log) Religious Polarization; 0.0969 0.0950 0.136 0.134
(0.113)  (0.113) (0.116)  (0.116)
(log) Primary Industries Employment; 0.119 0.132
(0.199) (0.199)
(log) Mining Employment; -0.189 -0.269
(0.959) (0.959)
(log) Agricultural Employment; 0.130 0.146
(0.201) (0.201)
(log) Years with Conflict [Pre-1979]; -0.0418  -0.0231  -0.0401  -0.0410
(0.0201)  (0.0281)  (0.0295)  (0.0297)
Observations 289 289 289 289 289 289 289
R-squared 0.801 0.803 0.803 0.782 0.801 0.804 0.804

NoTE: The unit of observation is a district i. The sample covers 289 districts. OLS estimates are reported in all columns. The dependent
variable is the (log) number of primary schools constructed under the INPRES program in a district . The variable Children 5-14; represents
the number of school-aged children in district . The variable School Attendance [5-14] represents the enrollment rate of school-aged children
in district i. The variable Enrollment Population; represents the population-wise pre-INPRES enrollment rates observed in district . The
variable Public Sector Employment; represents share of population working in the public sector observed in district . The variable Rural
Population; represents the share of population of district 7 living in rural areas. The variable Religious Polarization; captures the extent
of religious diversity and is the measure used and described in more detail in Section 8.1. The variable Primary Industries Employment;
corresponds to the share of population working in primary industries (i.e. Agricultural and Mining Industries) observed in district 7. All
these socio-economic variables were obtained from Duflo (2001) or computed using the 1971 Census (IPUMS (2018)). The variable (log)
Years with Conflict [Pre-1979]; is the (log) number of years with conflict episodes observed in district ¢ during the period [1955-1979].
Standard error are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

A.3 Robustness Analysis: Synthetic Control Method

This appendix is dedicated to a major robustness check, namely applying the synthetic control
method to our setting. In recent applications, the synthetic control method has proven to be
a valid tool to assess the impact of policy-related events (see e.g. Abadie and Gardeazabal
(2003), Abadie et al. (2010), Billmeier and Nannicini (2013), Saia (2017)) where i) it is possible
to distinguish treated from untreated units and ii) the outcome of interest was a continuous
variable (e.g. GDP, trade flows, ect). Unlike in most of the previous works, in our setting the
outcome of interest is a dichotomous variable and, as explained in the previous section, our
treatment of interest is the intensity of the school construction program (since the program
was implement across the entire country). In order to employ the synthetic matching in our
setting, we need to depart from previous works along two dimensions. Firstly, we define treated
and control units based on the intensity of the treatment. That is, the potential counterfactual

units for a given district are all districts where the intensity of the INPRES program was lower
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Figure Al: Event Study Effect of Inpres School over time [4 years rolling windows|
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SOURCE: The figure displays the coefficient of variable (# Schools/# Children); obtained over different non-overlapping
time-windows. Estimates are obtained using as dependent variable a dummy that takes a value of 1 if a violent event was
observed in district ¢ and year t. 90 % confidence intervals are displayed. The shaded area corresponds to the time-window
1975-1978, when most of the INPRES schools were constructed. Red bars relate to the Post-1978+ period when we expect the
program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting —
see discussion in Section 5.3).

than for the unit of interest. Secondly, due to computational limitations (mainly related to
converging problems of the Synthetic Control Method algorithm with dichotomous variables)
we use as outcome of interest the number of years with conflict events observed in a 5-year

time-window.2?

For each district, we apply the synthetic algorithm to construct a counterfactual unit as a
weighted combination of a group of potential counterfactual units.®® Weights are selected
in order to approximate the incidence of conflict events of the unit in question prior to the
implementation of the INPRES program, using a transparent data-driven procedure. The idea
behind this method is that if the matching window is large enough, the weighted combination is

able to replicate the structural parameters of our district of interest and successfully reproduce

29In other words, we divide our panel into 8 sub-periods and we collapse all units along this dimension. The 8
sub-periods are: [1955-1959], [1960-1964], [1965-1969], [1970-1974], [1975-1978], [1979-1984], [1985-1989] and
[1990-1994]. The first 5 time-windows correspond to the pre-INPRES period. Note that in Online Appendix B.5
we replicate our baseline results of Table 2 using the 5-year-period conflict measure of the Synthetic Control
Method analysis. We continue to find a strong and statistically significant conflict-reducing impact of INPRES
school construction.

30We implement the synthetic control method for all districts where the number of schools is above the
25th percentile. This is due to the fact that the synthetic algorithm requires a certain number of potential
counterfactual units. Including all low-INPRES intensity units would create computational problems related to
the very limited number of potential counterfactual units available (e.g. the district with the lowest number of
INPRES schools would not have any potential counterfactual unit to be compared with).
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all the observed and unobserved determinants of conflict for the district in question. To ensure
that the results are not driven by the inclusion of any particular district and to assess statistical
significance of our estimates, we replicate this procedure using 500 different groups of potential
counterfactuals, where each counterfactual group is computed randomly by drawing on two-thirds

of all control districts.3!

In order to assess the total effect of the INPRES program at the national level we aggregate all
treated districts and the corresponding synthetic counterfactual observations. In doing so, we
are able to compare the actual incidence of violence observed in Indonesia with the distribution
of violence observed in the 500 aggregate synthetic counterfactual units. We remove all districts

for which the synthetic algorithm fails to provide a good match during the matching window.3?

The left panel in Figure A2 plots the actual evolution of conflict events observed in our sample
(solid line) and the one provided by aggregating synthetic units over the period of interest
(dashed line). In the case of the pre-INPRES period, the synthetic counterfactuals provide a
good approximation of the aggregate level of conflict events observed in Indonesia, and the
synthetic (dashed line) and actual violence (solid line) behave very similarly. After 1978, the
dashed line shows how violence would have developed if fewer schools had been constructed in
each district. The two lines start to diverge substantially right after the end of the INPRES
program and we can see that there are fewer conflict events in the districts with more INPRES
schools compared to the synthetic counterfactual. The right panel in Figure A2 displays the

evolution of the difference between actual and synthetic units.

A.4 Robustness Analysis: Using the Predicted Number of INPRES Schools

As show above in Appendix A.1, INPRES school construction was to a quite substantial extent
driven by the gap in the pre-INPRES enrollment rate and the number of children of school
age. In the current Appendix A.4 we make use of this and display results when using the gap
in the pre-INPRES enrollment rate directly as predictor of conflict, as well as when focusing
on predicted school construction as explanatory variable of conflict. In particular, in column 1
of Table A2, we reproduce for comparison the baseline estimate of column 3 of Table 2, while
in column 2 we use as right-hand-side variable the pre-INPRES gap in enrollment rates. The
coefficient is of large magnitude but not statistically significant. Then in column 3 have as
explanatory variable the predicted INPRES school construction, obtained from column 1 of

Table A1, per 1,000 school-aged children in a district ¢, yielding a sizeable, statistically significant

31Further details on the use of subsampling methods as inferential tools for synthetic control estimators are
presented in Saia (2017).

32Tn particular, we remove all units for which the difference between actual and synthetic aggregate observations
during the pre-INPRES period is greater than 2 - ¢ (conflicts events,,.—inprEs), where o is the standard
deviation. In Online Appendix B.5 we show that the results are very similar when all districts (i.e. also those
with a poor match) are included.
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Figure A2: Results with Synthetic Control Method

Actual vs Synthetic Conflicts (%)
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A) Levels B) Difference

NOTE - Left Panel: The solid line corresponds to the actual average incidence of violence observed in all districts, while the dashed
line captures the average incidence of violence obtained from synthetic counterfactuals. The dark grey area around the dashed
line indicates the 99% confidence interval. Each synthetic unit was computed as a weighted average of randomly drawn group
districts where the intensity of the INPRES program was lower than in the district of interest. Weights are selected according to
the incidence of conflict events of the unit in question prior to the implementation of the INPRES program. We remove all districts
for which the synthetic algorithm fails to provide a good match during the matching window (see additional details in the text).
Right Panel: The dashed line represent the average difference between actual incidence of violence observed in a district and the
incidence of violence obtained from the synthetic counterfactuals of the Left Panel.

coefficient of interest. For the purpose of taking into account that the predicted INPRES schools
are estimated with error, in column 4 we follow the GLS approach and weight observations by
the inverse of the standard error of the prediction, leading to very similar results as in column 3.
Finally, in columns 5-8 we follow the same approaches as in columns 1-4, but for the specification
of column 6 of the baseline Table 2. We find in all four specifications a strong and statistically

significant impact of the explanatory variable on reducing conflict.
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Table A2: Robustness: Using predicted number of INPRES schools from Column 1 of Table A1l

Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6) (7) (8)
(# Schools / # Children); * Post-1978; -0.0173%**
(0.00610)
(1 - School Attendance [5-14]); * Post-1978, -0.0562
(0.0510)
(Predicted # Schools / # Children); * Post-1978, -0.0368***
(0.0129)
(Predicted # Schools / # Children); * Post-1978, [Weighted] -0.0437*F*
(0.0150)
(# Schools / # Children); * Years since 1978, -0.00305%**
(0.000705)
(1 - School Attendance [5-14]); * Years since 1978, -0.0217*%*
(0.00638)
(Predicted # Schools / # Children); * Years since 1978, -0.00833***
(0.00177)
(Predicted # Schools / # Children); * Years since 1978, [Weighted] -0.00881***
(0.00183)

Observations 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.464 0.464 0.464 0.456 0.465 0.465 0.466 0.457
District FEs Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend Yes Yes Yes Yes Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
Sample Mean .08 .08 .08 .08 .08 .08 .08 .08

Mean [SD] Inpres Schools 2.35[1.26] 2.35[1.26]  2.18 [.6] 2.18 [.6] 2.35 [1.26]  2.35 [1.26] 2.18 [.6] 2.18 [.6]

The unit of observation is a district ¢ and year ¢. The full sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all columns
The dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year ¢. In columns 1 and 5, the variable (# Schools/# Children);
represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district ¢. In the remaining columns, the variable (Predicted
# Schools/# Children); captures the predicted number of primary schools constructed under the INPRES program, obtained using the specification displayed in column 1 of Table
A1, per 1,000 school-aged children in a district i. The variable School Attendance [5-1/] represents the enrollment rate of school-aged children in district i computed using the 1971
Census (IPUMS (2018)). Columns 4 and 8 display results obtained applying a GLS approach and using weighted linear regressions where observations are weighted by the inverse
of the standard error of the prediction to account for estimation error. The dummy Post-1978, takes a value of 1 for the years after the first year when we expect the program
to deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see discussion in Section 5.3). The variable Years
since 1978, is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The conflict data was constructed using the Sydney Mor

Herald, following the approach described in Section 4.1 and in Online Appendix B.2. Robust standard errors clustered at the district level are reported in parenthesis. Statistical
significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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A.6 Robustness Analysis: Water and Sanitation Program

Below are displayed the results when controlling for the intensity of a water and sanitation
program being implemented contemporaneously with INPRES. As discussed in section 6.3, the
water and sanitation program does not impact the level of conflict, while the estimated impact

of school construction remains virtually unchanged.

Table A5: Robustness: Controlling for the water and sanitation investment program

Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6)
(# Schools / # Children); * Post-1978, -0.0138**  -0.0120*%  -0.0187***
(0.00646)  (0.00683)  (0.00707)
(# Schools / # Children); * Years Since 1978, -0.00162%**  -0.00213***  -0.00313***
(0.000595)  (0.000801)  (0.000877)
Intensity Water and Sanitation Program; * Post-1978, 0.00435 0.00783 0.00593
(0.0156)  (0.0137) (0.0193)
Intensity Water and Sanitation Program; * Years since 1978, 0.000655 0.00152 0.000349
(0.00155) (0.00162) (0.00215)
Observations 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.345 0.450 0.506 0.346 0.450 0.506
District FEs Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend No Yes Yes No Yes Yes
Province x Year FEs No No Yes No No Yes
Sample Mean .08 .08 .08 .08 .08 .08

NoOTE: The unit of observation is a district ¢ and year t. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all
columns. The dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year ¢. The variable (# Schools/# Children);
represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district . The variable Intensity Water and
Sanitation Program; represents the intensity of a water sanitation program implemented contemporaneously with INPRES in district ¢. The dummy Post-1978, takes a
value of 1 for the years after the first year when we expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being
recruitable for fighting — see discussion in Section 5.3). The variable Years since 1978, is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes
value 2, and so on. The conflict data was constructed using the Sydney Morning Herald, following the approach described in Section 4.1 and in Online Appendix B.2.
Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

A.7 Robustness Analysis: Migration and Rural Population

As discussed in subsection 6.4, we extend here the set of controls of our baseline Table 2 to
include measures of migration and rural population. In particular, we use the Indonesian
population census of 1971, 1980 and 1990 (IPUMS (2018)) to build a (rough) time-varying
variable of migration, defined as the share of population in a given district and year that has
immigrated from another province (note that we do not have information on between-district
migration). Drawing on the same raw data, we also build a second control variable, namely the
share of the population in a given district and year living in a rural area. Given that we only
have 3 census waves of data available, we need to heavily interpolate the data to build these
two variables. In particular, for pre-1971 values we use the 1971 value, between 1971 and 1990
we use linear interpolation, drawing on the closest observable data points, while post-1990 we
assign the 1990 value. The scarcity of data results in very noisy measures and warrants great

caution in the interpretation of the results.?*

34There are 10 districts for which the match over time was problematic. In these cases, we used average values
at the province level to construct the two measures. The results are essentially the same when we remove these
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Table A6 displays the results when including the migration and rural population measures in
our baseline specifications. We find that the results remain very similar when controlling for
these variables. These findings need to be interpreted with caution, given that the available

data only permits us to construct quite rough proxies for these measures.

Table A6: Robustness: Controlling for time-varying migration and rural population

Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6) (7) (8)
(# Schools / # Children); * Post-1978; -0.0173%%F  _0.0174%%%  _0.0173%** -0.0174*%*

(0.00610)  (0.00610)  (0.00611)  (0.00610)
(# Schools / # Children); * Years Since 1978; -0.00305%*F*  -0.00306***  -0.00305***  -0.00306***

(0.000705)  (0.000706)  (0.000708)  (0.000710)

Observations 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506
Migration; No Yes No Yes No Yes No Yes
Rural Population; No No Yes Yes No No Yes Yes
District FEs Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend Yes Yes Yes Yes Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes Yes Yes Yes Yes

NoOTE: The unit of observation is a district ¢ and year ¢. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all columns. The
dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year t. The variable (# Schools/# Children); represents the number of primary
schools constructed under the INPRES program per 1,000 school-aged children in a district ¢. The dummy Post-1978; takes a value of 1 for the years after the first year when we expect
the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see discussion in Section 5.3). The variable Years
since 1978; is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. Migrations;; represents the share of population in a district ¢ and year ¢
having immigrated from another province. Rural Population;; corresponds to the share of population in a district ¢ and year ¢ living in rural areas. The conflict data was constructed using
the Sydney Morning Herald, following the approach described in Section 4.1 and in Online Appendix B.2. Time-varying measures of migration and rural population were computed using
the Indonesian population census of 1971, 1980 and 1990 (IPUMS (2018)) (additional details are provided in the text). Robust standard error clustered at the district level are reported in
parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

A.8 Robustness Analysis: Intensive Margin

As discussed in Section 6.8, we at present investigate whether education may not only affect the
extensive margin of experiencing conflict or not, but also play a role for the intensive margin of
conflict frequency. More specifically, in the Table A7 we define count measures of the number
of days, weeks, resp. months in a year and district featuring newspaper articles in the Sydney
Morning Herald referring to conflict according to our algorithm. No matter whether we slice
the data in terms of days, weeks or months we continue to find that schooling reduces the scope

for conflict frequency.

Another way to proxy for the intensive margin is to take into account the length of a given
newspaper article. Bigger events (e.g. more intensive fighting) should on average result in longer
articles than more minor incidents. In Table A8 we hence use the average length of the articles
related to conflict events as a proxy of the intensity of the events in each district-year. We find
a strong effect of education reducing the average length of conflict-related newspaper articles,

consistent with a drop in fighting intensity.

In a nutshell, we find in the current Appendix section that while education has a large effect on

the extensive margin of conflict, we also observe that schooling construction pushed down the

districts.
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Table A7: Robustness: Intensive margin 1/2

1) @) ®3) 4) (5) (6)

Dep. Variable: log(Days+1)y  log(Weeks+1)y  log(Months+1)y,  log(Days+1)y  log(Weeks+1)y  log(Months+1)y
(# Schools / # Children); * Post-1978; -0.0122%* -0.0135%* -0.0139%**

(0.0493) (0.0111) (0.00378)
(# Schools / # Children); * Years Since 1978 -0.00191 -0.00227* -0.00250%**

(0.211) (0.0515) (0.00148)

Observations 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.688 0.681 0.654 0.688 0.681 0.654
District FEs Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend Yes Yes Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes Yes Yes

NOTE: The unit of observation is a district ¢ and year ¢. The sample covers 289 districts across 26 provinces over the period 1955-1994. OLS estimates are reported in
all columns. The dependent variable is defined as the (log) number of days, weeks or months featuring newspaper articles in the Sydney Morning Herald referring to
conflict events in district ¢ in year ¢. The dummy Post-1978; takes a value of 1 for the years after the first year when we expect the program to deploy major effects
(which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see discussion in Section 5.3). The variable Years since 1978,
is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The conflict data was constructed using the Sydney Morning
Herald, following the approach described in Section 4.1 and in Online Appendix B.2. Robust standard error clustered at the district level are reported in parenthesis.
Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A8: Robustness: Intensive margin 2/2

) @ ® @
Dep. Variable: log(Avg. Length +1) Inverse Hyperbolic log(Avg. Length +1) Inverse Hyperbolic
(# Schools / # Children); * Post-1978, -0.128%** -0.139%**
(0.0457) (0.0496)
(# Schools / # Children)); * Years Since 1978, -0.0269*** -0.0291%**
(0.00518) (0.00562)
Observations 11,560 11,560 11,560 11,560
R-squared 0.505 0.506 0.506 0.507
District FEs Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes
District-Specific Linear Trend Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes

NOTE: The unit of observation is a district ¢ and year t. The sample covers 289 districts across 26 provinces over the period 1955-1994. OLS estimates
are reported in all columns. In columns 1 and 3 [2 and 4], the dependent variable is defined as the (log) [inverse hyperbolic sine] average length of
featuring newspaper articles in the Sydney Morning Herald referring to conflict events in district ¢ in year t. The dummy Post-1978; takes a value of 1
for the years after the first year when we expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age
for being recruitable for fighting — see discussion in Section 5.3). The variable Years since 1978, is a measure that until 1978 takes value 0, in 1979
takes value 1, in 1980 takes value 2, and so on. The conflict data was constructed using the Sydney Morning Herald, following the approach described
in Section 4.1 and in Online Appendix B.2. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is
represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

intensive margin of conflict.

A.9 Robustness Analysis: Main Keywords

An important parameter for the construction of the conflict data is the set of keywords used, as
discussed in Section 6.8. In Table A9 below are listed the baseline set of terms used to identify

conflict-related sentences following the procedure described in Online Appendix B.2.

Table A9: Baseline Definition conflict keywords

Conflict, Battle, Assault, Kill, Riot, Attack, Turmoil, Unrest, Warfare, Soldier, Army,
Insurgent, Terrorist, Disorder, Strike, Shoot, Massacre, Revolt.

Here we assess whether our results are robust when only a subsample of these keywords are used.
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To this end we carry out a Monte Carlo analysis with 1000 repetitions where for each draw only
two-thirds of the baseline keywords are used. We first display in Figure A3 the distribution
of the average conflict likelihood depending on the sample of keywords used. The dashed line
represents the average number of conflict episodes obtained using the baseline set of keywords.
While being by construction lower, the average number of conflict events obtained with a smaller
number of keywords remains fairly stable and close to the one obtained using the whole set of

conflict-related terms.

Further, we replicate our baseline results using each of the 1000 drawn conflict measures. Panels
A and B in Figure A4 display the distribution of coefficients estimated using baseline regressions
presented in columns 3 and 6 of Table 2, respectively. In both cases, point estimates of the
coefficient of interest appear to be fairly stable and are consistent with the estimates reported

in the main text.

Figure A3: Average conflict episodes estimated using 1,000 groups of conflict-related keywords
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NoTE: The figure shows the distribution of the average conflict likelihood obtained using 1,000 different samples. Each sample
was created by following the approach described in Section 4.1 and by randomly drawing only two-thirds of the baseline keywords.
The dashed line represents the average number of conflict episodes obtained using in the full baseline set of keywords.

A.10 Robustness Analysis: Broader Set of Keywords and Alternative Newspaper
Data

As discussed in Section 6.8, the current Appendix presents the findings when using a broader
set of keywords, and another newspaper source, the Canberra Times. As far as a broader set of
keywords are concerned, we now as a robustness check include the additional words listed in

Table A10, which often refer to conflict events but may occasionally pick up "false positives".

Concerning the alternative newspaper source, as explained in Online Appendix B.2, both in

terms of readership and uninterrupted coverage the Sydney Morning Herald is preferable to the
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Figure A4: Distribution of coefficients estimated using 1,000 groups of conflict-related keywords
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NotTE: The figure shows the distribution of coefficients estimated using 1,000 different samples. Each sample was created by
following the approach described in Section 4.1 and by randomly drawing two thirds of the baseline keywords. Panel A and B
depict the distribution of coefficients estimated using baseline regressions presented in columns 3 and 6 of Table 2, respectively.
The dashed line represents the point estimate of the corresponding coefficient obtained using all baseline keywords.

Table A10: Broader Definition conflict keywords

Baseline Definitions + Engage, Defeat, Jar, Fight, Onslaught, Collide, Infringe,
Onrush, Blast, Struggle, Upheaval, Hit, Combat, Tumult, Rebellion, Ravish, Forces,
Slaughter, Assail, Guerrilla, Carnage, Snipe, Rebel, Uprising, Blash, Insurrection,
Butchery, Aggression, Terrorism, Clash, Smash.

Canberra Times. Still, considering a second media source is useful. Table A11 below displays
the results when replicating the columns 1 and 3 of our baseline Table 2 using broader keywords
or Canberra Times articles. In particular, columns 1 and 2 of Table A1l reproduce the columns
1 and 3 of our baseline Table 2, while in columns 3-4 of Table A11 the aforementioned set of
keywords is used of the data construction, in columns 5-6 the Canberra Times is used as sole
source of information instead of the Sydney Morning Herald, while in columns 7-8 a district
year is coded as having conflict if this has been featured in an article of either the Canberra
Times or the Sydney Morning Herald. Table A12 performs the analogous robustness exercises
but for the columns 4 and 6 of Table 2 (instead of columns 1 and 3). The results of Tables A1l
and A12 point out that our findings are similar when broadening the keywords considered or

newspaper source adopted.
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Table A11: Robustness: Alternative sources 1/2

1) 2 3) () (5) (6) (M (®)
Dep. Variable: Conflict Episode; SMH SMH SMH-Broad SMH-Broad cT cT SMH+CT SMH+CT

(# Schools / # Children); * Post-1978, -0.0127%%% -0.0173%%  -0.00912*  -0.00988  -0.00710% 0.000292 -0.0161%** -0.0L97***
(0.00448)  (0.00610)  (0.00496)  (0.00847)  (0.00388) (0.00564) (0.00474)  (0.00677)

Observations 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.345 0.506 0.375 0.544 0.325 0.460 0.392 0.545
District FEs Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend No Yes No Yes No Yes No Yes
Province x Year FEs No Yes No Yes No Yes No Yes
Sample Mean .08 .08 13 13 .06 .06 11 11

NoTE: The unit of observation is a district < and year t. The dataset covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all
columns. The dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ in year ¢. The variable # Schools/# Children; represents the
number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district . The dummy Post-1978, takes a value of 1 for the years after
the first year when we expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see
discussion in Section 5.3). columns 1 and 2 report results obtained using conflict data constructed using the Sydney Morning Herald, following the approach described in
Section 4.1 and in Online Appendix B.2. In columns 3 and 4, conflict data were obtained using the Sydney Morning Herald and a more coarse set of conflict-related keywords
(see discussion in Appendix A.9). Columns 5 and 6 report results obtained using conflict data constructed following the approach described in Section 4.1 using the Canberra
Times. In columns 7 and 8 the dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ in year ¢ when we combine the two sources.
Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A12: Robustness: Alternative sources 2/2

(1) 2) (3) (4) (®) (6) (7) (8)
Dep. Variable: Conflict Episode; SMH SMH SMH-Broad SMH-Broad cT cT SMH+CT  SMH+CT

(# Schools / # Children); * Years Since 1978, -0.00146¥** -0.00305%** -0.00133%** -0.00256*** -0.000882%* -0.00118%* -0.00176*** -0.00321%%*
(0.000421)  (0.000705)  (0.000449)  (0.000856)  (0.000348)  (0.000512)  (0.000432)  (0.000786)

Observations 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.346 0.506 0.375 0.545 0.325 0.460 0.392 0.546
District FEs Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend No Yes No Yes No Yes No Yes
Province x Year FEs No Yes No Yes No Yes No Yes
Sample Mean .08 .08 13 13 .06 .06 .06 .06

NoOTE: The unit of observation is a district ¢ and year ¢. The dataset covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all columns. The
dependent variable is a dummy that takes a value of 1 if a violent event was observed in district i in year ¢. The variable # Schools/# Children; represents the number of primary schools
constructed under the INPRES program per 1,000 school-aged children in a district . The variable defined as Years s 1978, is a variable that until 1978 takes value 0, in 1979 takes value
1, in 1980 takes value 2, and so on. columns 1 and 2 report results obtained using conflict data constructed using the Sydney Morning Herald, following the approach described in Section 4.1
and in Online Appendix B.2. In columns 3 and 4, conflict data were obtained using the Sydney Morning Herald and a more coarse set of conflict-related keywords (see discussion in Appendix
A.9). Columns 5 and 6 report results obtained using conflict data constructed following the approach described in Section 4.1 using the Canberra Times. In columns 7 and 8 the dependent
variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ in year ¢ when we combine the two sources. Robust standard error clustered at the district level are
reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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A.11 Robustness Analysis: Alternative Conflict Data

The coverage period of our conflict measure constructed using the Sydney Morning Herald
(abbreviated, SMH) overlaps from 1979-1994 with the conflict measure from GDELT (GDELT
(2018)) that covers 1979-2014, but there is no temporal overlap with the conflict variable from
ICEWS (ICEWS (2018)), as ICEWS starts in 1995 (and finishes in 2014) and SMH data ends
in 1994.%° Similarly, there is also lack of overlap with the NVMS (NVMS (2019)) data. The
coverage of NVMS starts in 1998 for nine conflict-prone provinces and increases to 15 provinces
plus greater Jakarta beginning in 2005, but the data is not representative of Indonesia and the
coverage is judged less reliable for the earliest years (see Bazzi and Gudgeon (2018)).%° Hence,
we use NVMS data from 2005 to 2014.

Still, the overlap allows us to compare SMH with GDELT, revealing that for 86 percent of
observations these two variables have the same values (i.e. both 0 or both 1). The parallel
evolution over time of our measure when compared with GDELT is displayed graphically in
Figure A5. The correspondence for SMH and GDELT seems relatively high in the light of the
fact that for the period where ICEWS and GDELT overlap, they take on the same values for
only 62 percent of observations. Put differently, our measure is much more similar to GDELT
than is the case for ICEWS which differs substantially from GDELT. When comparing GDELT
with NVMS, we observe an increasing level of correspondence over time, as NVMS becomes
more representative (i.e. covers more of Indonesia) and becomes arguably more precise. While
for the period (2005-2014) these measures only correspond in 66 percent of cases, they have 78
percent of correspondence for the end of this period (i.e. for 2011-2014).

As a next step, below we use these three existing datasets on conflict in Indonesia to assess the
robustness of our results. All of these datasets, GDELT (GDELT (2018)), ICEWS (ICEWS
(2018)) and NVMS (NVMS (2019)), have the downside of only covering a time period after the
INPRES school construction program, which rules out the difference-in-difference analysis that
we carry out in our baseline regressions. In particular, our data from GDELT covers 1979-2014,
the ICEWS sample stretches over 1995-2014, and we use NVMS for the period 2005-2014,
allowing us to obtain a balance panel of conflict episodes in 194 districts (out of 289). However,
the analysis of the increasing impact of school construction (see e.g. the columns 4-6 of the
baseline Table 2) can be replicated using the GDELT, ICEWS and NVMS data, which is what
we do below in the Tables A13, A14, and A15 respectively. Reassuringly, in all these tables

we find comparable results as in our main analysis.®” The quantitatively smaller size of the

35For the main GDELT and ICEWS measures we focus on their categories 15 to 20 of events to code them as
"conflict", and narrow as robustness check the definition of conflict down to containing only their categories 18 to
20.

36Note that the focus of NVMS on conflict-prone provinces and on including also lower-scale events means
that the unconditional probability of observing a conflict event in our sample is close to 0.85, which implies that
the data only offers limited identifying variation.

3"Note that GDELT has changed from an annual resolution until 2005 to a monthly, resp. daily resolution

56



coefficients for the NVMS estimates is consistent with the expectation that the increasing effect

of school construction flattens out after some years.

Figure A5: Evolution of conflict episodes across alternative sources
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SOURCE: Authors’ computations from GDELT (2018) and own conflict data. SMH conflict data is obtained using the procedure
described in Section 4.1. The y-axis corresponds to the share of districts with a conflict for a given year.

Table A13: Robustness: Conflict data from GDELT (2018)

All Conflict Events;; Conflicts [18-20];
Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6) (7) (8)

(# Schools / # Children); * Years Since 1978, -0.000311 -0.00129**  -0.000965 -0.00201*** -0.000454  -0.00137**  -0.000919  -0.00194***
(0.000883) (0.000655) (0.000971) (0.000628)  (0.000605) (0.000585) (0.000677) (0.000575)

Observations 4,624 10,404 4,624 10,404 4,624 10,404 4,624 10,404
R-squared 0.353 0.574 0.419 0.624 0.325 0.527 0.388 0.583
District FEs Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
Province x Year FEs No No Yes Yes No No Yes Yes
Time-Window 1979-1994  1979-2014  1979-1994  1979-2014 1979-1994  1979-2014  1979-1994  1979-2014
Sample Mean 1 A1 1 A1 .06 27 .06 27

NOTE: The unit of observation is a district ¢ and year ¢. The dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ in year ¢.
The full dataset covers 289 districts across 26 provinces over the period 1979-2014. LPM estimates are reported in all columns. Conflict data from GDELT (2018). In the
first (last) four columns we code the categories 15 to 20 (18 to 20) of events as conflict. The variable # Schools/# Children; represents the number of primary schools
constructed under the INPRES program per 1,000 school-aged children in a district . The variable defined as Years since 1978, is a variable that until 1978 takes value
0, in 1979 takes value 1, in 1980 takes value 2, and so on. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is
represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

later on, which could result in non-classical measurement error. Hence, in Online Appendix B.24 we show that
restricting the GDELT regressions to a pre-2006 sample —if anything— strengthens the results.
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Table A14: Robustness: Conflict data from ICEWS (2018)

All Conflict Episodes;;

Conflicts [18-20];

(3) (4)

Dep. Variable: Conflict Episode; (1) (2)
(# Schools / # Children); * Years Since 1978  -0.00129*  -0.00161*
(0.000721) (0.000960)
Observations 5,780 5,780
R-squared 0.436 0.501
District FEs Yes Yes
Year FEs Yes Yes
Province x Year FEs No Yes
Time-Window 1995-2014  1995-2014
Sample Mean 4 4

-0.00103*  -0.000789
(0.000604) (0.000731)
5,780 5,780
0.360 0.434
Yes Yes
Yes Yes
No Yes
1995-2014  1995-2014
.25 .25

NoOTE: The unit of observation is a district ¢ and year t. The dependent variable is a dummy that takes a value of 1 if a violent event was observed
in district ¢ in year t. The dataset covers 289 districts across 26 provinces over the period 1995-2014. LPM estimates are reported in all columns.
Conflict data from ICEWS (2018). In the first (last) two columns we code the categories 15 to 20 (18 to 20) of events as conflict. The variable
# Schools/# Children; represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a
district ¢. The variable defined as Years since 1978 is a variable that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and
so on. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, **

p < 0.05, ¥** p < 0.01.

Table A15: Robustness: Conflict data from NVMS (2019)

Dep. Variable: Conflict Episode;

(2)

(# Schools / # Children); * Years Since 1978, -0.00323**  -0.00149
(0.00136)  (0.000998)
Observations 1,800 1,800
R-squared 0.695 0.788
District FEs Yes Yes
Year FEs Yes Yes
Province x Year FEs No Yes
Time-Window 2005-2014  2005-2014
Sample Mean .85

NoTE: The unit of observation is a district 4 and year ¢t. The dependent variable is a dummy that takes
a value of 1 if a violent event was observed in district 7 in year t. The dataset covers 194 districts across
17 provinces over the period 1995-2014. LPM estimates are reported in all columns. Conflict data from
?. The variable # Schools/# Children; represents the number of primary schools constructed under
the INPRES program per 1,000 school-aged children in a district i. The variable defined as Years since
1978 is a variable that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on.
Robust standard error clustered at the district level are reported in parenthesis. Statistical significance

is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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In the Online Appendices below we provide additional investigation and further results for the

various sections of the paper. We shall always start the title of a given Online Appendix section

with the same wording as the corresponding section in the main text. For example, the Online

Appendix section B.2 labeled "Data: Construction of the conflict measure" provides additional

details with respect to the section called "Data" (Section 4) in the main text.
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B.1 Historical Context: Impact of INPRES on School Attendance

As discussed in Section 3.1 of the main text, the INPRES school construction program has
been found in the literature to yield sizeable effects on educational outcomes. Below we show in
Table B1 that also with our data and specification we find a quantitatively large impact of the
INPRES school construction on the educational attainment. In particular, our depend variable
in this table corresponds to the district-level school attendance rate of school-aged children in
1971, resp. 1990, whereas the explanatory variable of interest is the same as in our baseline
regressions of Table 2. We find that in the most demanding specification (4), one more school

per 1000 school-aged children raises the attendance rate by 6.4 percentage points.

Table B1: Effect of INPRES on School Attendance

Dep. Variable: (log) Attendance Ratej (1) (2) (3) (4)

(# Schools / # Children); * Post-1978; 0.0595**  0.0679*** 0.0622*** 0.0640***
(0.0238)  (0.0241)  (0.0230)  (0.0230)

Observations 578 578 578 578
R-squared 0.807 0.814 0.804 0.809
Sample Age 5-14 5-14 6-12 6-12
District FEs Yes Yes Yes Yes
Province x Census-Year FEs Yes Yes Yes Yes
Average Age Children No Yes No Yes

NoTE: The sample covers 289 districts across 26 provinces. OLS estimates are reported in all columns. The dependent
variable is the (log) enrollment rate of school-aged children in district ¢ in census ¢t. Time-varying measures of enrollment
rate population were computed using the Indonesian population census of 1971 and 1990 (IPUMS (2018)). The variable (#
Schools/# Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-
aged children in a district i. The dummy Post-1978; takes a value of 1 for the year 1990. Robust standard errors clustered at
the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.2 Data: Construction of the conflict measure

As briefly summarized in Section 4 of the main text, our approach to construct a novel geo-

referenced dataset of conflict-related events in Indonesia consists of five steps.

The first step was to identify a valid source of data, i.e. a newspaper with a historical digital
archive allowing to cover our sample period 1955-1994. Complete time coverage of such a
long period starting more than 60 years ago is very rare, but thankfully we have found a
high-quality outlet, namely the Sydney Morning Herald (thereafter, SMH) which is a daily
newspaper published by Fairfax Media in Sydney, Australia.! Founded in 1831, the SMH
is the oldest continuously published newspaper in Australia and currently has a readership
of roughly half a million people (Morgan (2018)). According to Media Bias/Fact Check
(https://mediabiasfactcheck.com), the SMH has a slight to moderate liberal bias with high
quality of factual reporting. Using a major newspaper that is based in Australia has the
advantage of being geographically quite close to Indonesia without suffering from obvious
political biases in reporting. The SMH digital archive provides full-digital text coverage to every
edition of the newspaper published between January 1st, 1955 and February 2nd, 1995. As a
consequence, we have been able to construct a database of violent events in Indonesia between
1955 and 1994.

After having identified the newspaper, the second step was to analyze the underling unstructured
text data (i.e. newspaper articles) to construct the desired information. To this end, we have
performed a first selection of the articles where we retrieved all SMH articles related to Indonesia.
In particular, we searched over 820,000 articles available in the SMH archive and downloaded all
those containing at least once the word “Indonesia” (the resulting set of articles was of around
34,000).

In a third step, we used natural language processing algorithms to analyse the content of all
34,000 articles. In doing so, we screened all sentences contained in all 34,000 articles and
extracted all sentences where at least one conflict related term was present.? Concretely, we
divided all articles in sentences and searched sentence by sentence for a conflict-related term. If

a term was found, we stored the sentence for use in the following step.

Then (fourth step), we used a Named Entity Recognition algorithm to identify all real world
entities contained in all tagged sentences (i.e. all real-world objects that can be denoted with

a proper name and have a physical existence). A named entity is a real-world object, such

IThere exist also some other newspapers with digital archives, such as e.g. the New York Times, but they
typically have major restrictions on the number of articles downloadable per month, making the data collection
over such a large sample period with dozens of thousands of articles impracticable.

2The conflict-related terms used in the main analysis were: "conflict" "battle" "assault" "kill" "riot" "attack’
"turmoil" "unrest" "warfare" "solider" "army" "insurgent" "terrorist" "disorder" "revolt' "massacre" "strike" plus all
their variations (i.e. the terms with the suffix "ing" / "s" / "es" or "ed"). We also use as robustness checks i) a

sub-set of our main keywords, and ii) a larger set of keywords (see Appendices A.9 and A.10, respectively).

IV



as people, locations or organizations. As a consequence, not all the entities identified were
locations. Thus, we performed a fifth (and final) step where we matched all entities with

locations contained in a digital gazetteer of geographical entities in Indonesia.

After this final step, we were able to identify both the geographical coordinates of matched
locations (and in which district (kabupaten) they were located) and the time of the event (i.e.
the date of the article).

As discussed also in the main text, we have performed a wide set of robustness exercises to
assess the validity of our conflict measure. The main sensitivity tests were developed along four

different dimensions.

First, we perform all the above mentioned steps using a second newspaper: the Canberra Times
(thereafter, CT) which is another Australian newspaper with a digital archive available over the
period of interest. We prefer to rely on the SMH as main information source and use the CT as
source for robustness checks, as first the CT is much smaller (with its readership being about a
tenth of the one of SMH, according to Roy Morgan Research), and second its archive does not
contain all issues (e.g. in 1955 there are 347 issues available, in 1965 the number is 331, in 1975
322 and in 1985 366). This being said, reassuringly, we find similar results when replicating our

analysis using CT (see Appendix A.10).

Second, we have also performed additional exercises finding that our results hold when alternative
matching scores are adopted in the matching of entities and locations in the gazetteer (i.e. in the
fifth step, rather than using the perfect match we adopted a fuzzy match) (see Online Appendix
B.15).

Third, we replicate below our analysis using an alternative python algorithm to identify locations.
In particular, in the main analysis we used the Stanford Named Entities tagger present in the
NLTK module, while in this robustness test we relied on the geotert module, which appeared to
be “faster” then the NLTK module but less accurate (especially when locating entities such as
areas or regions). Reassuringly, results obtained using this alternative algorithm support the

main findings of the paper (see Online Appendix B.16).

Finally, we have used three alternative conflict databases to replicate our analysis, as discussed
below. These existing databases available for Indonesia are GDELT (2018), ICEWS (2018) and
NVMS (2019). They entail the downside of barring us from performing a difference-in-difference
analysis, as they do not cover the period prior to the INPRES program (GDELT starts in 1979,
ICEWS begins only in 1995, and NVMS starts (partial) coverage in 1998). Therefore, when
using these alternative data sources we are only able to perform an empirical exercise where the
identification strategy relies on the variation over time of the effect of the program. Also in
this case the results obtained with these alternative sets of conflict data are consistent with the

findings presented in the main analysis (see Appendix A.11).
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B.3 Data: Additional Descriptive Statistics

Table B2: Additional descriptive statistics

Variable Mean Std. Dev. Min. Max. Obs.
INDONESIAN POPULATION CENSUS OF 1971;:

Enrollment Population; 0.178 0.096 0.031  0.993 289
School Attendance (5-14); 0.483 0.154 0.016 0.841 289
Rural Population,; 0.736 0.382 0 1 289
Primary Industries Employment; 0.605 0.308 0 0.993 289
Mining Employment; 0.004 0.027 0 0.335 289
Agricultural Employment; 0.6 0.31 0 0.99 289
Religious Polarization; 0.23 0.309 0 0.998 289
Return to Education [Bricks]; -0.511 0.498 -4.180 0 238
Return to Education [Entrep.]; -1.062 1.67 -17.238 0 227
Average RoE Bricks and Entrep.; -0.772 1.116 -13.845 0 262
Princ. Comp. RoE Bricks and Entrep.; 0.003 1.027 -7.047  1.232 203

SOURCE: Authors’ computations from the Indonesian population census of 1971 (IPUMS (2018)).
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B.4 Empirical Strategy and Main Results: Alternative Balancing Covariates

Below in Table B4 we replicate the results of Table A1 in Appendix A.1, but having as dependent
variable the absolute number of INPRES schools constructed instead of the logarithm. The
results are very similar. In particular, we continue to find that the only correlates of school
construction that strongly determine the numbers of schools built are the gap in the pre-INPRES

enrollment rate of school-aged children, as well as the number of children having primary school

age.
Table B4: Balancing covariates - Dep. variable: # INPRES schools
Dep. Variable: INPRES Schools; (1) (2) (3) (4) (5) (6) (7)
Children 5-14; 0.00148***  0.00147***  0.00147*%%* 0.00154*** 0.00148*** 0.00149***  0.00149***
(5.06e-05)  (5.55e-05)  (5.56e-05)  (5.30e-05)  (5.15e-05)  (5.68e-05)  (5.69e-05)
(1 - School Attendance [5-14]); 179. 4% 133.0%** 132.6%** 177.9%#* 132.8%** 132.3%%*
(32.22) (38.48) (38.71) (32.34) (38.48) (38.71)
Enrollment Population; -22.41 -22.82 -12.58 -13.08
(55.25) (55.47) (56.11) (56.30)
Public Employment; 26.53 26.42 32.74 32.63
(55.68) (55.79) (56.02) (56.12)
Rural Population; 22.91 22.54 24.48 23.99
(24.96) (25.22) (25.01) (25.26)
Religious Polarization; 18.24 18.10 21.42 21.26
(17.63) (17.70) (17.91) (17.97)
Primary Industries Employment; 37.08 38.54
(28.13) (28.16)
Mining Employment; 16.48 11.31
(183.0) (183.0)
Agricultural Employment; 37.45 39.04
(28.36) (28.40)
Years with Conflict [Pre-1979]; -1.317 -0.792 -1.333 -1.340
(1.352) (1.291) (1.325) (1.328)
Observations 289 289 289 289 289 289 289
R-squared 0.773 0.782 0.782 0.750 0.774 0.783 0.783

NOTE: The unit of observation is a district <. The sample covers 289 districts. OLS estimates are reported in all columns. The dependent variable is the
number of primary schools constructed under the INPRES program in a district i. The variable Children 5-14; represents the number of school-aged
children in district 7. The variable School Attendance [5-14] represents the enrollment rate of school-aged children in district ¢. The variable Enrollment
Population,; represents the population-wise pre-INPRES enrollment rates observed in district i. The variable Public Sector Employment; represents share
of population working in the public sector observed in district ¢. The variable Rural Population, represents the share of population of district ¢ living in
rural areas. The variable Religious Polarization; captures the extent of religious diversity and is the measure used and described in more detail in Section
8.1. The variable Primary Industries Employment; corresponds to the share of population working in primary industries (i.e. Agricultural and Mining
Industries) observed in district ¢. All these socio-economic variables were obtained from Duflo (2001) or computed using the 1971 Census (IPUMS
(2018)). The variable Years with Conflict [Pre-1979]; is the number of years with conflict episodes observed in district ¢ during the period [1955-1979].
Standard error are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.5 Robustness Analysis: Synthetic Control Method — Additional Results

In this Online Appendix we shall i) replicate the baseline regressions when using the conflict
measure constructed for the synthetic control method (SCM) of Section 6.1, and ii) replicate
the SCM findings of Section 6.1 when including the districts with a poor match. In particular,
in Table B5 below we run a variant of our baseline regressions, using the exactly same conflict
variable as for the graphical SCM analysis (which required the grouping of observations over
several years). We still find a statistically significant conflict-reducing impact of INPRES school
construction. As expected, the coefficients are now of larger magnitude, as they reflect the

impact over 5-year-periods instead of annually.

Further, Figure B1 below replicates the results of Figure A2 in Section 6.1 of the main text, but
includes all districts, even the ones for which the synthetic algorithm fails to provide a good
match during the matching window (see additional details in Section 6.1).% It turns out that

the results remain very similar.

Table B5: Robustness: Results obtained using the conflict measure of Section 6.1

Dep. Variable: Number of Years with Conflict Episodes;y (1) (2)
(# Schools / # Children); * Post-1978 Periodsy -0.0734%**

(0.0239)
(# Schools / # Children); * Periods since 1978y -0.0352°%**

(0.0102)

Observations 2,312 2,312
R-squared 0.671 0.671
District FEs Yes Yes
Year FEs Yes Yes
Sample Mean .39 .39

NoTE: The unit of observation is a district ¢ and time-window W. The sample covers 289 districts across 26 provinces
over the period 1979-2005. We divide our panel into 8 sub-periods and we collapse all units along this dimension. The
8 time-windows are: [1955-1959], [1960-1964], [1965-1969], [1970-1974], [1975-1978], [1979-1984], [1985-1989] and [1990-
1994]. The first 5 time-windows correspond to the pre-INPRES period. OLS estimates are reported in all columns.
The dependent variable is the number of years with conflict events observed in district ¢ and time-windows w. The
variable (# Schools/# Children); represents the number of primary schools constructed under the INPRES program
per 1,000 school-aged children in a district ¢ time-window W. The dummy Post-1978 Periodsyy takes a value of 1 for
the time-windows after the first year when we expect the program to deploy major effects. The variable Periods since
1978w is a measure that until the time-windows [1975-1978] takes value 0, in [1979-1984] takes value 1, in [1985-1989]
takes value 2, and so on. The conflict data was constructed using the Sydney Morning Herald, following the approach
described in Section 4.1 and in Online Appendix B.2. Robust standard errors clustered at the district level are reported
in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

3The average number of districts for which the synthetic algorithm fails to provide a good match during the
matching window is of around 11.
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Figure B1: Results with Synthetic Control Method - All Districts Included (also the ones with
a poor match)
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NOTE - Left Panel: The solid line corresponds to the actual average incidence of violence observed in all districts, while the dashed
line captures the average incidence of violence obtained from synthetic counterfactuals. The dark grey area around the dashed line
indicates the 99% confidence interval. Confidence intervals are computed using the distribution of parameter’ estimates obtained
using 500 different groups of potential counterfactual units. Each synthetic unit was computed as a weighted average of randomly
drawn group districts where the intensity of the INPRES program was lower than in the district of interest. Weights are selected
according to the incidence of conflict events of the unit in question prior to the implementation of the INPRES program. Right
Panel: The dashed line represent the average difference between actual incidence of violence observed in a district and the incidence
of violence obtained from the synthetic counterfactuals of the Left Panel.



B.6 Robustness Analysis: Climate and Oil Shocks

As discussed in section 6.5, in what follows we study whether a series of localized shocks
could drive our findings. In particular, we shall investigate the role of climate shocks, such as
precipitation or temperature shocks, as well as spikes in natural resource rents. The raw data
on climate shocks is taken from Tollefsen et al. (2012). Further, Indonesia being a sizeable oil
producer, we focus in terms of resource rents on oil revenues.* Drawing on Prio-Grid (Tollefsen
et al. (2012)) data on oil presence in a given grid cell, we construct a time-invariant indicator of
whether in a given district ever oil has been depleted, and interact this variable of oil presence
with the current world oil price (from BP Statistical Review of World Energy Prices). The fact
of using the "oil potential" rather than the (arguably more endogenous) actual "oil production'
follows the identification strategy implemented in Berman et al. (2017). As an alternative
approach we also control for a dummy capturing whether there is any employment or not in
the oil sector in each district from the 1971 Census (IPUMS (2018)) interacted with current
world oil prices. As shown in Tables B6 and B7, respectively, the estimated impact of school

construction is very robust to controlling for these climatic and natural resource shocks.

“4Indonesia contributes about 1 percent of world oil production (Company (2018)), which makes oil a sizeable
sector of the Indonesian economy, and hence an important shock to control for in a robustness exercise. This
being said, reassuringly for our identification strategy, Indonesia is typically a small enough producer to not be
able to affect the world oil price.
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Table B6: Robustness: Controlling for climate and oil rent shocks 1/2

Dep. Variable: Conflict Episode;

1

)

®3)

(4)

()

(6)

()

(# Schools / # Children) * Post-1978 -0.0173%%%  0.0174%%*  -0.0174%F*  -0.0187***
(0.00610) (0.00609) (0.00607) (0.00616)
(# Schools / # Children) * Years Since 1978 -0.00305%**  -0.00305***  -0.00309***  -0.00294***
(0.000705) (0.000704) (0.000703) (0.000690)
Observations 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.506 0.506 0.506 0.506 0.506 0.506 0.507 0.507
Precipitations; No Yes Yes Yes No Yes Yes Yes
Temperature; No No Yes Yes No No Yes Yes
Oil [PRIO-Grid]; x Oil Prices; No No No Yes No No No Yes
District FEs Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend Yes Yes Yes Yes Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
NOTE: The unit of observation is a district ¢ and year ¢. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all columns. The
dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year t. The variable (# Schools/# Children); represents the number of primary

schools constructed under the INPRES program per 1,000 school-aged children in a district i. Time-varying measures of precipitations and temperature were obtained from the Prio-Grid
Tollefsen et al. (2012) data. The variable Oil [Prio-Grid] takes a value of 1 if oil has been depleted in district ¢ over the period. World oil prices were retrieved from the BP Statistical
Review of World Energy Prices) (additional details are provided in the text). The dummy Post-1978, takes a value of 1 for the years after the first year when we expect the program to
deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see discussion in Section 5.3). The variable Years since 1978, is a
measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The conflict data was constructed using the Sydney Morning Herald, following the approach
described in Section 4.1 and in Online Appendix B.2. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10,
** p < 0.05, ¥** p < 0.01.

Table B7: Robustness: Controlling for climate and oil rent shocks 2/2

Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6) (M)

(# Schools / # Children) * Post-1978 -0.0173%%%  0.0174**%*  -0.0174*F*  -0.0178%**

(0.00610)  (0.00609)  (0.00607)  (0.00614)
(# Schools / # Children) * Years Since 1978 -0.00305%**  -0.00305***  -0.00309***  -0.00304***

(0.000705)  (0.000704)  (0.000703)  (0.000701)

Observations 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.506 0.506 0.506 0.506 0.506 0.506 0.507 0.507
Precipitations; No Yes Yes Yes No Yes Yes Yes
Temperature; No No Yes Yes No No Yes Yes
Oil [Census 1971]; x Oil Prices; No No No Yes No No No Yes
District FEs Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend Yes Yes Yes Yes Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes Yes Yes Yes Yes

NOTE: The unit of observation is a district ¢ and year ¢. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all columns. The
dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year t. The variable (# Schools/# Children); represents the number of primary
schools constructed under the INPRES program per 1,000 school-aged children in a district . Time-varying measures of precipitations and temperature were obtained from the Prio-Grid
Tollefsen et al. (2012) data. The variable Oil [Census 1971] takes a value of 1 if there was any employment in the oil sector in the district ¢ in the 1971 Census IPUMS (2018). World oil
prices were retrieved from the BP Statistical Review of World Energy Prices) (additional details are provided in the text). The dummy Post-1978,; takes a value of 1 for the years after
the first year when we expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see discussion in
Section 5.3). The variable Years since 1978, is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The conflict data was constructed using
the Sydney Morning Herald, following the approach described in Section 4.1 and in Online Appendix B.2. Robust standard error clustered at the district level are reported in parenthesis.
Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.7 Robustness Analysis: Controlling for the Number of Secondary Schools

Another potential confounding factor could have been the construction of secondary schools, as
discussed in section 6.6. In particular, one could imagine that maybe places with fewer newly
constructed INPRES schools may get in compensation more secondary schools and this could
have a direct impact on conflict proneness. Hence, in Table B8 below we control for the number
of secondary schools (junior and senior high schools). It turns out that our results are virtually

unchanged when controlling for the number of secondary schools.

Table B8: Robustness: Controlling for number of secondary schools

Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6) (7) (8)
(# Schools / # Children); * Post-1978, -0.0173%F*  -0.0149** -0.0143** -0.0141**

(0.00610)  (0.00674)  (0.00662) (0.00676)
(# Schools / # Children); * Years Since 1978, -0.00305%**  -0.00300***  -0.00288***  -0.00292***

(0.000705)  (0.000782)  (0.000767)  (0.000786)

Observations 11,560 11,400 11,400 11,400 11,560 11,400 11,400 11,400
R-squared 0.464 0.461 0.461 0.461 0.465 0.461 0.461 0.461
Number of Junior High Schools;; No Yes No No No Yes No No
Number of Senior High Schools; No No Yes No No No Yes No
Total Number of High Schools;; No No No Yes No No No Yes
District FEs Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend Yes Yes Yes Yes Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes Yes Yes Yes Yes

NoTE: The unit of observation is a district ¢ and year ¢. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all columns.
The dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year ¢. The variable (# Schools/# Children); represents the number of
primary schools constructed under the INPRES program per 1,000 school-aged children in a district i. The dummy Post-1978, takes a value of 1 for the years after the first year when
we expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see discussion in Section 5.3). The
variable Years since 1978, is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. Time-varying measures of the number of Junior and
Senior High Schools in the districts were obtained from Duflo (2001). Only 5 data-points are available. For the pre-1974 period we use the 1973-1974 value, between 1975 and 1979 we
use the 1978-1979 value, between 1980 and 1984 we use the 1983-1984 value, between 1985 and 1989 we use the 1988-1989 value, while for the post-1990 period we assign the 1993-1994
value. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.8 Robustness Analysis: Alternative levels of clustering

As mentioned in the Section 6.7 of the main text, in the two Tables B9 and B10 below we show
that the conclusions of the statistical inference continue to hold when we allow for standard
errors to be clustered at alternative levels. In particular, Table B9 allows for standard errors
to be clustered at the level of the 26 Indonesian provinces (although this number of clusters is
arguably below the conventional minimum levels used in the literature), while Table B10 allows
for standard errors to be two-way clustered at the district and year levels. In both cases of

Tables B9 and B10 the coefficients of interest remain statistically significant.

Table B9: Clustering of standard errors at the Province level

Dep. Variable: Conflict Episode; (1) (2)

®3) ) () (6) ) (®) 9)

(# Schools / # Children) * Post-1978, -0.0127%F*  -0.0101%% -0.0173%**
(0.00207)  (0.00480)  (0.00514)

(# Schools / # Children) * Years Since 1978, -0.00146***  -0.00175%**  -0.00305***

(0.000312)  (0.000429)  (0.000818)
(# Schools / # Children); * Years 1979-1984, -0.00658**  -0.00952**  -0.0168***
(0.00248)  (0.00433)  (0.00479)
(# Schools / # Children); * Years 1985-1989, -0.0111%F%  -0.0151%*%  -0.0253***
(0.00395)  (0.00680)  (0.00700)
(# Schools / # Children); * Years 1990-1994 -0.0218%F*  -0.0268***  -0.0489***
(0.00451)  (0.00663) (0.0101)
Observations 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.345 0.450 0.506 0.346 0.450 0.506 0.346 0.450 0.507
District FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend No Yes Yes No Yes Yes No Yes Yes
Province x Year FEs No No Yes No No Yes No No Yes
Sample Mean .08 .08 .08 .08 .08 .08 .08 .08 .08

NOTE: The unit of observation is a district i and year t. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all columns. The dependent variable is a dummy that takes a
value of 1 if a violent event was observed in district i and year t. The variable (# Schools/# Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district i.
The dummy Post-1978, takes a value of 1 for the years after the first year when we expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see
discussion in Section 5.3). The variable Years since 1978 is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The variable Years 1979-198}; is a dummy taking a value of 1 for the
years 1979-1984 (it is analogous for the two variables referring to the period 1985-1989 and 1990-1994, respectively). The conflict data was constructed using the Sydney Morning Herald, following the approach described in Section
4.1 and in Online Appendix B.2. Robust standard error clustered at the province level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

Table B10: Two-way clustering of standard errors at the district and year level

Dep. Variable: Conflict Episode; (1) 2) (3) (4) (5) (6) (7) (8) 9)

(# Schools / # Children) * Post-1978, -0.0127%F  -0.0101  -0.0173**

(0.00508)  (0.00741)  (0.00834)
(# Schools / # Children) * Years Since 1978, -0.00146***  -0.00175**  -0.00305***

(0.000438)  (0.000715)  (0.000843)
(# Schools / # Children); * Years 1979-1984,

-0.00658  -0.00952  -0.0168**

(0.00452)  (0.00665)  (0.00707)
(# Schools / # Children); * Years 1980-1985, -0.0111% -0.0151  -0.0253**
(0.00645)  (0.0102)  (0.0111)

(# Schools / # Children); * Years 1990-1994,

-0.0218%%F  -0.0268%%  -0.0489%%*
(0.00607)  (0.0117)  (0.0138)

Observations 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.345 0.450 0.506 0.346 0.450 0.506 0.346 0.450 0.507
District FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend No Yes Yes No Yes Yes No Yes Yes
Province x Year FEs No No Yes No No Yes No No Yes
Sample Mean .08 .08 .08 .08 .08 .08 .08 .08 .08

NoTE: The unit of observation is a district ¢ and year ¢. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all columns. The dependent variable is a dummy that
takes a value of 1 if a violent event was observed in district i and year t. The variable (# Schools/# Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children
in a district i. The dummy Post-1978; takes a value of 1 for the years after the first year when we expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable
for fighting — see discussion in Section 5.3). The variable Years since 1978 is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The variable Years 1979-1984¢ is a dummy
taking a value of 1 for the years 1979-1984 (it is analogous for the two variables referring to the period 1985-1989 and 1990-1994, respectively). The conflict data was constructed using the Sydney Morning Herald, following
the approach described in Section 4.1 and in Online Appendix B.2. Robust standard errors two-way clustered at the district and year levels are reported in hesi i i

by * p < 0.10, **
p < 0.05, *** p < 0.01

Statistical is T
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B.9 Robustness Analysis: Logit

As discussed in the main text in Section 6.7, in the current Online Appendix section we will
replicate our main baseline specifications using conditional logit regressions instead of the linear
probability model that we apply throughout the paper.® As for the baseline analysis, we find a

statistically significant conflict-reducing effect of the number of INPRES schools constructed.

Table B11: Impact of INPRES school construction on conflict: Fixed effects logit estimator

Dep. Variable: Conflict Episode; (1) (2) (3) (4)
(# Schools / # Children);* Post-1978, -0.435%%  -0.970%**
(0.209) (0.307)

(# Schools / # Children); * Years since 1978, -0.0323* -0.0783**

(0.0169)  (0.0374)
Pseudo R-squared 0.281 0.386 0.280 0.386
Observations 5,920 5,920 5,920 5,920
District FEs Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes
District-Specific Linear Trend No Yes No Yes
Sample Mean 14 14 14 14

NoTE: The unit of observation is a district ¢ and year ¢t. The full sample covers 289 districts across 26 provinces over the period
1955-1994. Fixed effects logit estimates are reported in all columns. The dependent variable is a dummy that takes a value of 1
if a violent event was observed in district ¢ and year ¢. The variable (# Schools/# Children); represents the number of primary
schools constructed under the INPRES program per 1,000 school-aged children in a district ¢. The dummy Post-1978+ takes a
value of 1 for the years after the first year when we expect the program to deploy major effects (which is when the first INPRES
cohort reaches the critical age for being recruitable for fighting — see discussion in Section 5.3). The variable Years since 1978; is
a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The conflict data was constructed
using the Sydney Morning Herald, following the approach described in Section 4.1 and in Online Appendix B.2. Robust standard
error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05,
Rk p < 0.01.

5Note that when including province-year fixed effects, the estimator does not converge. Hence, we restrict
ourselves to the inclusion of district fixed effects, year fixed effects and district-specific time trends.
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B.10 Robustness Analysis: Province Level Results

Below we collapse the sample at a larger level of aggregation, building namely a panel at the
province-year level. As discussed in Section 6.7 of the main text, the find the same robust

conflict-reducing impact of school construction at this larger level of aggregation.

Table B12: Robustness: Province level

Dummy Conflict, (log) Districts with Conflict,,
Dep. Variable: (1) (2) (3) (4)
(# Schools / # Children), * Post-1978, -0.0434%** -0.0695***
(0.0220) (0.0219)
(# Schools / # Children), * Years Since 1978, -0.00432** -0.00777H*
(0.00212) (0.00215)
Observations 1,040 1,040 1,040 1,040
R-squared 0.620 0.620 0.679 0.680
Province FEs Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes
Sample Mean 45 45 4511 4511

NoTE: The unit of observation is a province p and year t. The sample covers 26 provinces over the period 1955-1994. LPM (OLS) estimates are
reported in the first (last) two columns. In columns 1 and 2 the dependent variable is a dummy that takes a value of 1 if a violent event was observed
in province p and year t. In columns 3 and 4 the dependent variable is the share of districts of province p and year t with violent events. The variable
(# Schools/# Children), represents the average number of primary schools constructed under the INPRES program per 1,000 school-aged children in
all districts of province p. The dummy Post-1978; takes a value of 1 for the years after the first year when we expect the program to deploy major
effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see discussion in Section 5.3). The variable
Years since 1978 is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The conflict data was constructed
using the Sydney Morning Herald, following the approach described in Section 4.1 and in Online Appendix B.2. Robust standard error are reported
in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

XVI



B.11 Robustness Analysis: Alternative Sample Subperiods

As discussed in Section 6.7, in the current Online Appendix we replicate the results of columns
7-9 of our baseline Table 2 when splitting the sample period in a different number of subperiods.
The results are displayed below in Table B13. We continue to find that the pacifying effect of

education is increasing over time.

Table B13: Robustness: Alternative sample subperiods

Dep. Variable: Conflict Episode;, (1) (2) (3) (4) (5) (6) (7) (8) 9) (10) (11) (12)
(# Schools / # Children); * Years 1979-1986, -0.0100%*  -0.00973* -0.0164***
(0.00444)  (0.00560)  (0.00600)
(# Schools / # Children); * Years 1979-1994, -0.0155%**  -0.0150%  -0.0294***
(0.00511)  (0.00856)  (0.00879)
(# Schools / # Children); * Years 1979-1984, -0.00658 -0.00952*%  -0.0168***
(0.00427)  (0.00536)  (0.00591)
(# Schools / # Children); * Years 1985-1989, -0.0111%%  -0.0151%  -0.0253***
(0.00540)  (0.00813)  (0.00837)
(# Schools / # Children); * Years 1990-1994, -0.0218%F%  -0.0268***  -0.0489%**
(0.00594)  (0.0101)  (0.0110)
(# Schools / # Children); * Years 1979-1982; -0.00249 -0.00520  -0.0149**
(0.00439)  (0.00542)  (0.00623)
(# Schools / # Children); * Years 1983-1986; -0.0176%%F  -0.0211%%*  -0.0268***
(0.00598)  (0.00750)  (0.00762)
(# Schools / # Children); * Years 1987-1990, -0.00739 -0.0117 -0.0208**
(0.00510)  (0.00846)  (0.00855)
(# Schools / # Children); * Years 1991-1994; -0.0235%*%  -0.0286*F* -0.0513%**
(0.00635)  (0.0104)  (0.0115)
(# Schools / # Children); * Years 1979-1981; -0.00318 -0.00627  -0.0144**
(0.00476)  (0.00550)  (0.00587)
(# Schools / # Children); * Years 1982-1984, -0.00997*  -0.0137**  -0.0200**
(0.00512)  (0.00652)  (0.00773)
(# Schools / # Children); * Years 1985-1987, -0.0123%* -0.0168*  -0.0283***
(0.00623)  (0.00852)  (0.00907)
(# Schools / # Children); * Years 1988-1990; -0.0111%+* -0.0163*  -0.0263***
(0.00547) (0.00901) (0.00922)
(# Schools / # Children); * Years 1991-1994, -0.0235%F%  -0.0295%**%  -0.0534%**
(0.00635)  (0.0106)  (0.0116)
Observations 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.345 0.450 0.506 0.346 0.450 0.507 0.346 0.450 0.507 0.346 0.450 0.507
District FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend No Yes Yes No Yes Yes No Yes Yes No Yes Yes
Province x Year FEs No No Yes No No Yes No No Yes No No Yes

NoOTE: The unit of observation is a district i and year t. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all columns. The dependent variable
is a dummy that takes a value of 1 if a violent event was observed in district 7 and year ¢. The variable (# Schools/# Children); represents the number of primary schools constructed under the INPRES
program per 1,000 school-aged children in a district i. The variable Years 1979-1984, is a dummy taking a value of 1 for the years 1979-1984 (it is analogous for the other variables referring to the other
subperiods). The conflict data was constructed using the Sydney Morning Herald, following the approach described in Section 4.1 and in Online Appendix B.2. Robust standard error clustered at the
district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.12 Robustness Analysis: Exploiting annual INPRES school construction num-

bers

As mentioned in Section 6.7, below we make use of the information on the annual INPRES
construction numbers. In particular, rather than applying 1979 as first year of the treatment
(i.e. five years after 1974) for all districts, we rely in the current Online Appendix section
on two alternative district-specific starting dates for our treatment. First, we focus on " Year
Mazxz + 5", where "Year Max" corresponds to the year with the highest number of INPRES
schools constructed in the district (i.e. the mode). So if, say, e.g. in all years 0 or 1 schools get
constructed, but in 1975 two new schools were built, then " Year Maz + 5" would be 1980 (i.e.
five years after the mode year). The second variant we consider is " Year Half + 5", where " Year
Half" corresponds to when at least half of INPRES schools where constructed in the district.
Again, if e.g. in total 4 schools were built in a district over the entire INPRES period and the
second school was finished in 1976 when " Year Half + 5" would take a value of 1981. Notice
that for these two exercises the sample is slightly smaller than in our baseline Table 2 (i.e 11,280
vs 11,560), as for some districts, we only know the total number of schools constructed but not

the annual construction numbers.

The results of these robustness checks are displayed in Table B14. Reassuringly, the findings of

these robustness checks are very similar to the main results of our baseline Table 2.

Table B14: Robustness: Exploiting Annual School Construction Numbers

Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6) (7) (8)
(# Schools / # Children); * Post-Year Maz + 5 -0.0148%%* -0.0128***
(0.00462)  (0.00469)
(# Schools / # Children); * Years since Year Max + 5 -0.000972%**  -0.00133***
(0.000288) (0.000358)
(# Schools / # Children); * Post-Year Half + 5 -0.0141%%%  -0.0147***
(0.00469)  (0.00433)
(# Schools / # Children); * Years since Year Half + 5 -0.000920%**  -0.00141***
(0.000288) (0.000325)
Observations 11,280 11,280 11,280 11,280 11,280 11,280 11,280 11,280
R-squared 0.344 0.505 0.344 0.505 0.343 0.505 0.344 0.505
District FEs Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend No Yes No Yes No Yes No Yes
Province x Year FEs No Yes No Yes No Yes No Yes
Sample Mean .08 .08 .08 .08 .08 .08 .08 .08

NoOTE: The unit of observation is a district ¢ and year ¢. The sample covers 282 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in
all columns. The dependent variable is a dummy that takes a value of 1 if a violent event was observed in district i and year ¢. The variable (# Schools/# Children);
represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district i. The further variables included are
described in the text of Online Appendix B.12. The conflict data was constructed using the Sydney Morning Herald, following the approach described in Section 4.1 and in
Online Appendix B.2. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, ***
p < 0.01.
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B.13 Robustness Analysis: Placebo

As discussed in Section 6.8 of the main text, to investigate concerns about our main findings
having been obtained "by chance', we carry out a placebo exercise where we randomly assign
treatment in 1000 placebo datasets with the same average conflict likelihood as the "true" data
(i.e. our main conflict dataset built based on SMH articles). Figure B2 below depicts the clouds
of estimated coefficients of our baseline specifications (Columns 3 and 6 of baseline Table 2) with
this "fake" data. Panel A displays all coefficients obtained from all 1000 placebo samples. Each
dot corresponds to one combination of coefficients in a cartesian plane where the horizontal
axis represents the beta coefficient of the specification of Column 3, while the vertical axis
depicts the beta coefficient of the specification of Column 6. The large black dot represents
our true coefficients. Panel B shows the estimates when the coefficients obtained with the two
specifications (and the same placebo dataset) are both statistically significant at the 10 % level:
there are only 17 placebo datasets (out of 1000) for which we obtain statistically significant
results using the two models. If in Panel C we use the 5 % significance threshold, the number of
placebo datasets that satisfy this criterion is of 4 (out of 1,000). Finally, when in Panel D we
use the 1 % significance level (which is the level of statistical significance obtained using the
true data) there are no placebo datasets that satisfy this criterion. These results highlight how

extremely unlikely it would have been to obtain our results "by chance".
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Figure B2: Results of Placebo Exercise

Y -3 i
B a7 T a7 |
@ @
- o = o 1
8 27 8 37 :
T o 5 o | 6@
2 51 o 81 . 0%,
g - g . ' ®%
2 5] 25l !
=2 = 2 !
T o 5o :
3 1 3 _____________________: ____________________
5 & 5 84 !
* 0 * | o
~ o™ ~ o™ [ |
\‘QQ 8 7 {% 8 7 e @ :
o] ! o] !
£ o P £ o G |
& 81 [ 8 81 ] [
€ : € 5 |
o 84 | Random g displayed: 1000 @ 84 | Random B displayed: 17
v T T T 1 T T T T v T T T 1 T T T T
-.04 -.03 -.02 -.01 0 01 02 .03 .04 -.04 -.03 -.02 -.01 0 01 02 .03 .04
B (# Schools /# Children), * Post 1978 B (# Schools /# Children), * Post 1978
|<> Random Events @ Actual Events | |0 Random Events @ Actual Events |
A) All estimated coefficients B) Both coefficients stat. sign. at the 10 % level
& 2 | - 2 |
5 ° ! 5 ° !
R o 1 2 o 1
g S ' g S '
< ! o IS :
@ ™ | @w ™
g 57 ' o 2 57 '
3 - ' g - '
> 5 | > 5 |
. a | EE] |
g | g |
T e e
= - | [ p— 1
5 24 [ 5 8- [
#* 0 0 | E |
N~ o | ~ o |
2 27 o | 2 27 |
e ! o S !
£ @ | £ @ |
&8 S ] [ 8 S ] [
® 5 ' ® 5 !
@ 24 : Random @ displayed: 4 @ 54 : Random § displayed: 0
v T T T 1 T T T T v T T T 1 T T T T
-.04 -.03 -.02 -.01 0 01 02 .03 .04 -.04 -.03 -.02 -.01 0 01 02 .03 .04
B (# Schools /# Children); ™ Post 1978: B (# Schools /# Children); * Post 1978:
|0 Random Events @ Actual Events | |0 Random Events @ Actual Events |

C) Both coefficients stat. sign. at the 5 % level ~C) Both coefficients stat. sign. at the 1 % level

NOTE - Each panel displays all coefficients obtained using 1,000 placebo conflict datasets with the same average conflict likelihood
as our main conflict dataset built based on SMH articles. Each dot corresponds to one combination of coefficients in a cartesian
plane where the horizontal axis represents the beta coefficient of the specification of Column 3, while the vertical axis depicts the
beta coefficient of the specification of Column 6 of baseline Table 2. The large black dot represents our true coefficients. Panel A
displays all coefficients. Panel B (C) [D] shows the estimates when the coeflicients obtained with the two specifications (and the
same placebo dataset) are both statistically significant at the 10 % (5 %) [1 %] level. The number of placebo dataset displayed in
each cartesian plan is reported in the bottom-right corner.
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B.14 Robustness Analysis: Using Multiple Keywords to Construct Conflict Data

In the current Online Appendix B.14 we replicate our main results using a more restrictive
coding of the presence of conflict. In particular, we use the identical raw information from the
Sydney Morning Herald, but now for a district year to be coded as having conflict, we restrict

ourselves to using only articles where multiple occurrences of conflict related terms are present.

The results are presented in Table B15. The upper panel A assesses the robustness of column 3
of baseline Table 2, which is reproduced for comparison in column 1 of Table B15. The estimates
displayed in columns 2 [3] of Table B15 are obtained when applying the procedure described in
Section 4.1, but including only articles where the total number of conflict related terms from
our broad set of keywords (listed in Table A10) in the text is greater than 2 [3]. Columns 4 and

5 are analogous, but focus on the more "narrow" baseline set of keywords (listed in Table A9).

The lower panel B of Table B15 is analogous to the upper panel A, but performs a robustness
analysis of column 6 (instead of column 3) of baseline Table 2. We find that in all columns of
Table B15 the estimates are statistically significant and of similar order of magnitude as for our

main results of baseline Table 2.
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Table B15: Robustness: Using Multiple Keywords to Construct Conflict Data

Panel A
Total conflict-related keywords in the article
All Keywords Baseline Keywords
Dep. Variable: Conflict Episode; Baseline >2 >3 >2 >3
(# Schools / # Children); * Post-1978; -0.0173%** -0.0163%*F*F  -0.0171%** -0.0187FFF  _0.0111%***
(0.00610) (0.00573)  (0.00591) (0.00607)  (0.00365)
Observations 11,560 11,560 11,560 11,560 11,560
R-squared 0.464 0.466 0.455 0.451 0.422
District FEs Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes
District-Specific Linear Trend Yes Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes Yes
Sample Mean 077 .069 .062 06 .043
Panel B
Total number conflict-related keywords in the article
All Keywords Baseline Keywords
Dep. Variable: Conflict Episodey Baseline >2 >3 >2 >3
(# Schools / # Children); * Years since 1978 -0.00305%** -0.00311%#%*  -0.00272%** -0.00313***  -0.00203***
(0.000705) (0.000608)  (0.000626) (0.000609)  (0.000482)
Observations 11,560 11,560 11,560 11,560 11,560
R-squared 0.465 0.467 0.456 0.452 0.423
District FEs Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes
District-Specific Linear Trend Yes Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes Yes
Sample Mean 077 .069 .062 .060 .043

NoOTE: The unit of observation is a district ¢ and year ¢. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM
estimates are reported in all columns. The dummy Post-1978, takes a value of 1 for the years after the first year when we expect the program to
deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see discussion in Section 5.3).
The variable (# Schools/# Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged
children in a district i. The variable Years since 1978, is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and
so on. The conflict data was constructed using the Sydney Morning Herald, following the approach described in Sections 4.1 and B.14. Robust
standard errors clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, ***

p < 0.01.
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B.15 Robustness Analysis: Reclink Match Locations

Below we replicate our main results using an alternative reclink threshold. Specifically, we assess
whether our results hold when alternative matching scores are adopted in the matching of entities
and locations in the gazetteer. Tables B16 and B17 display the results. Estimates reported in
the first columns correspond to our baseline estimates obtained using a matching score equal to
one (i.e., a perfect match between entities and gazetteer’ locations). The remaining columns
show results obtained using a fuzzy match and are ranked based on the distance from the perfect
matching score. Reassuringly the results are qualitatively similar to our preferred estimates.
The pattern of somewhat smaller magnitudes obtained using less accurate matching scores is

consistent with the view that noisy coverage of conflict events may lead to an attenuation bias.

Table B16: Alternative reclink score threshold in the geographical matching 1/2

Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(# Schools / # Children);* Post-1978 -0.0127%%% _0.0123¥%* -0.0129%** -0.00961** -0.00923* -0.0105** -0.0113** -0.0115%* -0.0113%** -0.0130%* -0.0132**
(0.00448)  (0.00446)  (0.00460)  (0.00485)  (0.00486) (0.00504) (0.00509) (0.00508) (0.00510) (0.00520) (0.00520)

District FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Reclink Score 1.000 0.998 0.996 0.994 0.992 0.990 0.988 0.986 0.984 0.982 0.980
Sample Mean 0773 .0785 .0831 0927 .097 1131 117 1173 1275 1411 1414

NoTE: The unit of observation is a district i and year ¢. The full sample covers 289 districts across 26 provinces over the period 1955-1994. Estimates reported in the first column correspond to our baseline
estimates obtained using a matching score equal to one (i.e., a perfect match between entities and gazetteer’ locations). The remaining columns show results obtained using a fuzzy match and are ranked based
on the distance from the perfect matching score. The dependent variable is a dummy that takes a value of 1 if a violent event was observed in district i and year t. The variable (# Schools/# Children);
represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district i. The dummy Post-1978, takes a value of 1 for the years after the first year
when we expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see discussion in Section 5.3). The conflict data was
constructed using the Sydney Morning Herald, following the approach described in Section 4.1 and in Online Appendix B.2. Robust standard error clustered at the district level are reported in parenthesis.
Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

Table B17: Alternative reclink score threshold in the geographical matching 2/2

Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6) (7) ©) (9) (10) (11)

(# Schools / # Children); ¥ Years since 1978y -0.00146*** -0.00143*** -0.00152*** -0.00132*** -0.00130*** -0.00154*** -0.00164*** -0.00167*** -0.00163*** -0.00179%** -0.00182***
(0.000421)  (0.000419)  (0.000435)  (0.000440)  (0.000440)  (0.000459)  (0.000464)  (0.000463)  (0.000465)  (0.000470)  (0.000470)

District FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Reclink Score 1.000 0.998 0.996 0.994 0.992 0.990 0.988 0.986 0.984 0.982 0.980
Sample Mean 0773 .0785 .0831 .0927 .097 1131 117 1173 1275 1411 1414

NoOTE: The unit of observation is a district i and year ¢. The full sample covers 289 districts across 26 provinces over the period 1955-1994. Estimates reported in the first column correspond to our baseline
estimates obtained using a matching score equal to one (i.e., a perfect match between entities and gazetteer’ locations). The remaining columns show results obtained using a fuzzy match and are ranked
based on the distance from the perfect matching score. The dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year t. The variable (# Schools/#
Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district i. The variable Years since 1978, is a measure that until 1978 takes
value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The conflict data was constructed using the Sydney Morning Herald, following the approach described in Section 4.1 and in Online Appendix
B.2. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.16 Robustness Analysis: Alternative Location Coding

Below we present a replication of the main baseline results when using an alternative location
coding mechanism. In particular, we use the geotex module to identify locations. The geotex
module is "faster" then the NLTK module but is less accurate mainly because it relies on a
pre-defined library with a list of places that is not extensive. Table B18 reports estimates
obtained using this alternative algorithm to identify locations. Due to the low accuracy, the
average incidence of conflict events obtained with this second routine is smaller than with our
preferred algorithm. However, we find that our findings are overall robust to this sensitivity

check.
Table B18: Robustness: Alternative algorithm adopted to code locations

Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6) (7) (8) (9)
(# Schools / # Children); * Post-1978, -0.00570*  0.000826  -0.00191
(0.00310)  (0.00268) (0.00370)
(# Schools / # Children); * Years since 1978, -0.000805**  -0.000814* -0.00120%*
(0.000311)  (0.000474) (0.000543)
(# Schools / # Children); * Years 1979-1984, -0.000241  0.00146  -0.00162
(0.00367)  (0.00287)  (0.00422)
(# Schools / # Children); * Years 1985-1989, -0.00540*  -0.00307  -0.00581
(0.00324)  (0.00380) (0.00415)
(# Schools / # Children); * Years 1990-1994, -0.0125%**  -0.00963 -0.0171*%*
(0.00471)  (0.00649) (0.00733)
Observations 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.371 0.450 0.494 0.372 0.451 0.494 0.372 0.451 0.495
District FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Time Trend No Yes Yes No Yes Yes No Yes Yes
Province x Year FEs No No Yes No No Yes No No Yes
Sample Mean .03 .03 .03 .03 .03 .03 .03 .03 .03

NOTE: The unit of observation is a district ¢ and year ¢. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all
columns. The dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year ¢. The variable (# Schools/# Children); represents
the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district . The dummy Post-1978; takes a value of 1 for the years
after the first year when we expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see
discussion in Section 5.3). The variable Years since 1978; is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The variable
Years 1979-1984 is a dummy taking a value of 1 for the years 1979-1984 (it is analogous for the two variables referring to the period 1985-1989 and 1990-1994, respectively).
The conflict data was constructed using the Sydney Morning Herald, following the approach described in Section 4.1 and using an alternative location coding mechanism.
Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.17 Robustness Analysis: Outliers and sample composition

As discussed in Section 6.10, we display below a series of robustness results when removing data
from one province at a time or cropping our sample duration. We start by describing graphically
in Figure B3 the evolution of the share of districts per province and year that have experienced
conflict. It turns out that for many provinces conflict is stationary over time and does not show
any particular trend. Interestingly, in some provinces such as Aceh and its neighboring province
Sumatera Utar there is an uptake in conflict events around the early 1990s when the Indonesian

government stepped up repression of the Aceh independence movement.

In Table B19 we replicate our baseline regressions when dropping one province at a time, while in
Tables B20 and B21 we similarly investigate the robustness of our baseline findings to reducing
the length of our sample duration (to address potential concerns about the surge in conflict
at the beginning of the 1990s). Reassuringly, the results are hardly changed in any of these

sensitivity checks.

Finally, in Tables B22 and B23, we drop districts with particularly low levels of INPRES school
construction, resp. particularly high primary school attendance in 1971, which yields similar
results. This statistical exercise addresses concerns that parts of our results could be driven by
grievances of districts that were initially well-doted in schools and got only few new INPRES
schools, leading to a surge in violence in low-INPRES places. Our results in Tables B22 and

B23 do not support this alternative story.
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Table B22: Robustness: Drop districts with a low number of INPRES schools over children

Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6) (7) (8) 9) (10)
(# Schools / # Children); * Post-1978, -0.0173%F*  -0.0143*%  -0.0122%* -0.0147**  -0.0103

(0.00610)  (0.00608) (0.00607) (0.00634) (0.00707)
(# Schools / # Children); * Years Since 1978 -0.00305%F*F  -0.00261*** -0.00286*** -0.00288*** -0.00194***

(0.000705)  (0.000718)  (0.000806)  (0.000722)  (0.000719)

Observations 11,560 10,400 9,240 8,040 6,840 11,560 10,400 9,240 8,040 6,840
R-squared 0.464 0.462 0.471 0.478 0.475 0.465 0.462 0.472 0.479 0.476
Remove Districts with INPRES schools in [Decile] - 1st [1-2] [1-3] [1-4] - 1st [1-2] [1-3] [1-4]
District FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sample INPRES Schools 2.35 2.5 2.65 2.81 3 2.35 2.5 2.65 2.81 3

NoTe: The unit of observation is a district 7 and year t. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all columns. The dependent variable is a dummy
that takes a value of 1 if a violent event was observed in district i and year ¢. The variable (# Schools/# Children); represents the number of primary schools constructed under the INPRES program per 1,000
school-aged children in a district 7. The dummy Post-1978; takes a value of 1 for the years after the first year when we expect the program to deploy major effects (which is when the first INPRES cohort reaches the
critical age for being recruitable for fighting — see discussion in Section 5.3). The variable Year e 1978, is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. Results
displayed in Columns 1 and 6 are obtained with the full sample. Results contained in Columns 2 and 7 are obtained by removing the districts in the lowest decile of the variable (# Schools/# Children). Results
displayed in Columns 3 and 8 are obtained by removing the districts with in the first two deciles of the variable (# Schools/# Children), and so on. The conflict data was constructed using the Sydney Morning Herald,
following the approach described in Section 4.1 and in Online Appendix B.2. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, **
p < 0.05, ¥ p < 0.01.

Table B23: Robustness: Drop districts with high primary school attendance in 1971 [Children
5-14]

Dep. Variable: Conflict Episode; (1) (2) 3) (4) (5) (6) (7 (8) 9) (10)
(# Schools / # Children); * Post-1978, -0.0173%%% -0.0190%**  -0.0215%**  -0.0238***  -0.0220**

(0.00610)  (0.00701)  (0.00805)  (0.00886) (0.00902)
(# Schools / # Children); * Years Since 1978, -0.00305%**  -0.00337***  -0.00383*** -0.00426*** -0.00445%**

(0.000705)  (0.000780)  (0.000861)  (0.000916)  (0.000963)

Observations 11,560 10,400 9,240 8,080 6,920 11,560 10,400 9,240 8,080 6,920
R-squared 0.464 0.479 0.462 0.443 0.465 0.465 0.480 0.463 0.445 0.467
Remove Districts in with School Attendance [5-14] in [Decile] - 10th [9-10] [8-10] [7-10] - 10th [9-10] [8-10] [7-10]
District FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sample School Attendance [5-14] in 1971 .52 48 .46 44 42 .52 A48 .46 A4 42

NoTE: NOTE: The unit of observation is a district i and year . The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all columns. The dependent variable is a dummy that takes
a value of 1 if a violent event was observed in district i and year ¢. The variable (# Schools/# Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district i.
The dummy Post-1978; takes a value of 1 for the years after the first year when we expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see
discussion in Section 5.3). The variable Years since 1978, is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The variable School Attendance [5-14] represents the enrollment rate of
school-aged children in district i in 1971, Results displayed in Columns 1 and 6 are obtained with the full sample. Results contained in Columns 2 and 7 are obtained by removing the districts with the highest decile of School Attendance
[5-14] in 1971. Results displayed in Columns 3 and 8 are obtained by removing the districts with in the top two deciles of School Attendance [5-14] in 1971, and so on. The conflict data was constructed using the Sydney Morning Herald,
following the approach described in Section 4.1 and in Online Appendix B.2. Robust standard error clustered at the district level are reported in parenthesis. Statistical signi is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.18 Heterogeneous Effects: Type of Conflict Keywords

Below are listed the keywords that are used in the analysis of heterogeneous effects with respect
to different types of conflict carried out in Section 7. In particular, to construct the "economic',

"religious/ethnic" and "political" conflict variables, we proceed as follows.

We used natural language processing algorithms to analyze the content of all articles containing
conflict-related events (see additional details in Section 4.1 and in Online Appendix B.2). In
doing so, we searched in the text for a three different set of terms used to identify "economic",
"religious/ethnic" or "political" conflict events (reported in Tables B24, B25 and B26, respectively).

Categories are not exclusive and an event can be related to more than one type.

Table B24: Keywords used for constructing economic conflict

Economic, Job, Unemployment, Recession, Income, Wage, Salary, Growth, Industry,
Food, Price, Famine, Starvation, Scarcity, Poverty.

Table B25: Keywords used for constructing ethno-religious conflict

Muslim, Protestant, Catholic, Hindu, Buddhist, Temple, Church, Mosque, Candi,
Masjid, Religion, Religious, Faith, Sundanese, Malay, Madurese, Batak, Minangk-
abau, Sundanese, Malay, Madurese, Batak, Minangkabau, Betawi, Bugis, Acehnese,
Bantenese, Banjarese, Balinese, Chinese, Sasak, Makassarese, Minahasan, Cirebonese,
Ethnicity, Ethnic, Tribe, Tribal, Linguist, Language, Identity, Cultural, Tradition.

Table B26: Keywords used for constructing political conflict

Election, Vote, Mayor, Government, Corruption, Bribery, Politics.
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B.19 Heterogeneous Effects: Additional heterogeneous effects on rural popula-

tion, bride price and initial school attendance

Below in Table B27 we present further heterogeneous effect estimations with respect to the
level of rural population and the practice of bride prices. We find that there are no discernable
heterogeneous effects and that our results hold in both rural and urban areas, as well as both in
the presence and in the absence of bride prices. Further, in Table B28 we slice the sample in
terciles of intial school attendance in 1971. We find that our results are —as expected— driven by

the construction of INPRES schools in areas with initially low or intermediate levels of primary

schools.
Table B27: Heterogeneous effects on rural population and on bride price
Dep. Variable: Conflict Episode; (1) (2) (3) (4)
(# Schools / # Children); * Post-1978, -0.0181** -0.00916**
(0.00710) (0.00459)
(# Schools / # Children); * Years Since 1978, -0.00455%** -0.00249%**
(0.00110) (0.000737)
(# Schools / # Children); * Post-1978, * High Intensity of Rural Population; -7.25e-05
(0.00986)
(# Schools / # Children); * Years Since 1978, * High Intensity of Rural Population; 0.00209
(0.00135)
(# Schools / # Children); * Post-1978, * High Intensity of the Practice of Bride Price, -0.0105
(0.0140)
(# Schools / # Children); * Years Since 1978, * High Intensity of the Practice of Bride Price, -2.61e-07
(0.00207)
Observations 11,560 11,560 10,800 10,800
R-squared 0.506 0.507 0.511 0.511
District FEs Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes
District-Specific Linear Trend Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes
.08 .08 .07 .07

Sample Mean
NOTE: The unit of observation is a district ¢ and year ¢. The full sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are
reported in all columns. The dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year ¢t. The variable (#
Schools/# Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district ¢. The unit of
observation is a district i. The variable High Intensity of Rural Population; is a dummy that takes a value of 1 if more than half of individuals in district ¢ live in
rural areas. The share of the population of district ¢ living in rural areas was computed using the 1971 Census (IPUMS (2018)). The variable High Intensity of
the Practice of Bride Price, is a dummy that takes a value of 1 if more than 50 percent of individuals in province p are from an ethnic group that traditionally
practices bride price as opposed to other customs (Source: Ashraf et al. (2019)). The dummy Post-1978, takes a value of 1 for the years after the first year when we
expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see discussion in
Section 5.3). The variable Years since 1978; is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The conflict data
was constructed using the Sydney Morning Herald, following the approach described in Section 4.1 and in Online Appendix B.2. Columns (1) and (2) include the
variables (High Intensity of Rural Population; * Post-1978,) and (High Intensity of Rural Population; * Years Since 1978;), respectively. Robust standard error
clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table B28: Robustness: Split sample by attendance children in 1971

Dep. Variable: Conflict Episode;

(1)

(2)

®3)

4)

(5)

(6)

(7

(# Schools / # Children); * Post-1978,

(# Schools / # Children); * Years Since 1978,
Observations

R-squared

Districts with Enrollment Tercile

District FEs

Year FEs

District-Specific Linear Trend

Province x Year FEs

Province x Year FEs

Sample Mean
Sample School Attendance [5-14] in 1971

0,017
(0.00610)

11,560
0.464

.08
.52

-0.0188**
(0.00793)

3,680
0.516

1st
Yes
Yes
Yes
Yes
Yes

.08
.35

-0.0387*
(0.0201)

3,800
0.434

2nd

.07
51

0.00242
(0.00696)

3,720
0.613

3rd

Yes
Yes
Yes
Yes

.08
.69

-0.00305%**
(0.000705)

11,560
0.465

.08
.52

-0.00563%**
(0.00138)

3,680
0.518

.08
.35

-0.00318*
(0.00174)

3,800
0.434

2nd

.07
.01

0.00110
(0.00116)

3,720
0.613

3rd

.08
.69

NOTE: The unit of observation is a district ¢ and year ¢t. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are reported in all
columns. The dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year ¢. The variable (# Schools/# Children); represents
the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district ¢. The dummy Post-1978, takes a value of 1 for the years
after the first year when we expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being recruitable for fighting — see
discussion in Section 5.3). The variable Years since 1978, is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. The variable School
Attendance [5-1/] represents the enrollment rate of school-aged children in district ¢ in 1971. Results displayed in Columns 1 and 4 are obtained with the full sample. Results
contained in Columns 2 and 5 (3 and 6) [4 and 8] are obtained using the districts with School Attendance [5-14] in the first (second) [third] tercile. The conflict data was
constructed using the Sydney Morning Herald, following the approach described in Section 4.1 and in Online Appendix B.2. Robust standard error clustered at the district level
are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.20 Channels and Mechanisms: Economic returns versus religious cleavages

In this Online Appendix we produce a series of sensitivity checks for the analysis carried out
in the main text in Section 8. In particular, we present a replication of the main results
when economic and societal variables are computed i) dropping all individuals attending school
and ii) using the full sample from the Indonesian population census of 1971 (IPUMS (2018)).

Reassuringly the results are similar to our preferred estimates (see Table B29 below).

We also show robustness to the major robustness checks carried out earlier on in the Appendix
A.10, namely the broadening of the keywords used (see Table B30 below) as well as the inclusion
of the Canberra Times as alternative media source (see Table B31 below). In both cases,
our results remain very similar. Finally, we also report below Table B32 where we slice the
treatment period in three subperiods in the aim of documenting the evolution of the effects over
time, finding that the economic returns to education channel gains importance over time. The

coefficients of this table have been represented graphically in Figure 1 in the main text.
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Table B32: Robustness mechanism: Effect by sample subperiods

Dep. Variable: Conflict Episode; (1) (2) (3) (4)
(# Schools / # Children); * Years 1979-1984, -0.0142 0.00181 -0.00280 0.00161
(0.0100)  (0.00751)  (0.00889)  (0.00654)
(# Schools / # Children); * Years 1985-1989%; -0.0283*  -0.00931 -0.0147 -0.00812
(0.0158)  (0.0121)  (0.0142)  (0.0133)
(# Schools / # Children); * Years 1990-1994, -0.0459*%*%  -0.0293**  -0.0427** -0.0135
(0.0221)  (0.0138)  (0.0186)  (0.0149)
(# Schools / # Children); * Years 1979-1984+ * Religious Polarization; -0.0399*%*%  -0.0398** -0.0490***  -0.0407**
(0.0192)  (0.0168)  (0.0186)  (0.0170)
(# Schools / # Children); * Years 1985-1989; * Religious Polarization; -0.0494  -0.0367 -0.0561* -0.0447
(0.0331)  (0.0204)  (0.0322)  (0.0330)
(# Schools / # Children); * Years 1990-1994; * Religious Polarization; -0.0984**  -0.108***  -0.114%**  -0.117%F*
(0.0387)  (0.0323)  (0.0331)  (0.0346)
(# Schools / # Children); * Years 1979-1984; * Return to Education [Bricks]; -0.0209%*
(0.0105)
(# Schools / # Children); * Years 1985-1989, * Return to Education [Bricks]; -0.0346*
(0.0200)
(# Schools / # Children); * Years 1990-1994, * Return to Education [Bricks]; -0.0398**
(0.0191)
(# Schools / # Children); * Years 1979-1984; * Return to Education [Entrep.]; -0.00193
(0.00442)
(# Schools / # Children); * Years 1985-1989; * Return to Education [Entrep.]; -0.00185
(0.00629)
(# Schools / # Children); * Years 1990-1994; * Return to Education [Entrep.]; -0.0159**
(0.00720)
(# Schools / # Children); * Years 1979-1984; * Average RoE Bricks and Entrep.; -0.00643
(0.00785)
(# Schools / # Children); * Years 1985-1989; * Average RoE Bricks and Entrep.; -0.0112
(0.0125)
(# Schools / # Children); * Years 1990-1994; * Average RoE Bricks and Entrep.; -0.0318**
(0.0126)
(# Schools / # Children); * Years 1979-1984; * Princ. Comp. RoE Bricks and Entrep.; -0.0111
(0.00682)
(# Schools / # Children); * Years 1985-1989, * Princ. Comp. RoE Bricks and Entrep.; -0.0169
(0.0135)
(# Schools / # Children); * Years 1990-1994, * Princ. Comp. RoE Bricks and Entrep.; -0.0317F**
(0.0101)
Observations 9,480 9,040 10,480 8,040
R-squared 0.524 0.530 0.519 0.536
District FEs Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes
District-Specific Linear Time Trend Yes Yes Yes Yes
Province x Year FEs Yes Yes Yes Yes

NoOTE: The unit of observation is a district ¢ and year t. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates
are reported in all columns. The dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year ¢. The
variable (# Schools/# Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a
district ¢. The variable Years 1979-1984, is a dummy taking a value of 1 for the years 1979-1984 (it is analogous for the two variables referring to the
period 1985-1989 and 1990-1994, respectively). The variable Religious Polarization corresponds to the level of religious polarization in district ¢, whereas
the variable Return to Education (RoE) indicates the relative economic advantages at the district level from having completed primary school. Religious
polarization and returns to education measures were computed using the 1971 Census (IPUMS (2018)) (see additional details in the text). The conflict
data was constructed using the Sydney Morning Herald, following the approach described in Section 4.1 and in Online Appendix B.2. Robust standard
error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.21 Channels and Mechanisms: How education may attenuate religious tensions

In this Online Appendix we carry out sensitivity checks for the estimations of Section 8.2. In
particular, in Table B33 we replicate the main analysis but code the dependent variables as
dummies instead of continuous variables, while in Table B34 we adopt the same sample as in
Duflo (2001) (covering only the years 1950 to 1972 instead of 1945 to 1972, which is the sample

period in our main analysis of Section 8.2).

Finally, we also interact in Table B35 our exposure to education variable with being of Muslim
or Christian religion (with all other religious denominations being the omitted category) to see
whether education may have a bigger or smaller impact for people belonging to the dominant
religious denomination of the country (i.e. about 87 percent of Indonesia’s population are
Muslim and 10 percent Christians). We detect no differential effects and find that education

breeds tolerance to a similar extent for different religions.

Table B33: Robustness - Societal channels: Alternative coding of survey answers

o) ® ® @ ® ©

Dep. Variable: Trust Dummy,  Trust Dummy, Marriage Dummy, Marriage Dummy, Relig. Dummy, Relig. Dummy,
(# Schools / # Children); * Born after 1962, 0.0173%* 0.0158%** 0.0121%* 0.00819 0.0110* 0.00963

(0.00666) (0.00676) (0.00555) (0.00541) (0.00637) (0.00704)
Observations 10,573 10,573 10,574 10,574 10,547 10,547
R-squared 0.126 0.159 0.190 0.250 0.082 0.094
District FEs Yes Yes Yes Yes Yes Yes
Cohort FEs Yes Yes Yes Yes Yes Yes
Gender No Yes No Yes No Yes
Ethnicity No Yes No Yes No Yes
Religion No Yes No Yes No Yes

NOTE: The unit of observation is an individual n born in district i. The sample covers all individuals surveyed in the Wave 5 of the IFLS SURVEY, born between 1945 and
1972. LMP estimates are reported in all columns. The dependent variables correspond to the dichotomous version of variables Trust, Marriage and Religiosity used in Table 7
and 8, with values 0-1 being coded as 0, and values 2-3 coded as 1. Additional details on survey variables are provided in 8.2. The variable (# Schools/# Children); represents
the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district i. The variable Born after 1962,, is a dummy that takes a
value of 1 if a given individual n was born after 1962 in district i. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is
represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table B34: Robustness - Societal channels: Alternative sample

(1) (2) 3) (4) ) (6)

Dep. Variable: Trust, Marriage,  Roscas, Trust,  Marriage, Roscas,

(# Schools / # Children); * Born after 1962, 0.0342%%%  0.0322%%  0.0175%* 0.0320%*  0.0280**  0.0162**
(0.0127)  (0.0145)  (0.00739) (0.0131)  (0.0133)  (0.00652)

Observations 9,837 9,838 10,434 9,837 9,838 9,787
R-squared 0.125 0.187 0.153 0.151 0.230 0.239
District FEs Yes Yes Yes Yes Yes Yes
Cohort FEs Yes Yes Yes Yes Yes Yes
Gender No No No Yes Yes Yes
Ethnicity No No No Yes Yes Yes
Religion No No No Yes Yes Yes

NotTE: The unit of observation is an individual n born in district i. The sample covers all individuals surveyed in the Wave 5 of the IFLS
SURVEY, born between 1950 and 1972. OLS estimates are reported in all columns. Trust, and Marriage, variables are used as continuous
variables ranging from 0 to 3, treating the scales of the survey questions as cardinal. Roscas,, is a dummy that take a value of 1 if the individual
participated to a arisan community group over the previous 12 months. Additional details on survey variables are provided in the text. The
variable (# Schools/# Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged
children in a district i. The variable Born after 1962,, is a dummy that takes a value of 1 if a given individual n was born after 1962 in district
i. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, **
p < 0.05, ¥** p < 0.01.

Table B35: Heterogeneous effect - Societal channels: Type of religions

(1) (2) (3)

Dep. Variable: Trust,  Marriage,  Arisan,

(# Schools / # Children); * Born after 1962, 0.0393  0.0282*%*F  0.0232%***
(0.0259)  (0.0123)  (0.00804)

(# Schools / # Children); * Born after 1962, * Muslim,, -0.0154  -0.00111 -0.0139
(0.0277)  (0.0141)  (0.00938)

(# Schools / # Children); * Born after 1962, * Christian, 0.00683  -0.0121 0.00252
(0.0330)  (0.0207)  (0.0179)

Observations 10,576 10,577 10,516
R-squared 0.133 0.226 0.237
District FEs Yes Yes Yes
Cohort FEs Yes Yes Yes
Gender Yes Yes Yes
Ethnicity Yes Yes Yes
Religion Yes Yes Yes

NOTE: The unit of observation is an individual n born in district ¢. The sample covers all individuals surveyed in the Wave 5 of the
IFLS SURVEY, born between 1945 and 1972. OLS estimates are reported in all columns. Trust, and Marriage, variables are used
as continuous variables ranging from 0 to 3, treating the scales of the survey questions as cardinal. Roscas, is a dummy that take
a value of 1 if the individual participated to a arisan community group over the previous 12 months. Additional details on survey
variables are provided in the text. The variable (# Schools/# Children); represents the number of primary schools constructed under
the INPRES program per 1,000 school-aged children in a district . The variable Born after 1962, is a dummy that takes a value of 1
if a given individual n was born after 1962 in district 7. The variable Muslim,, is a dummy that takes a value of 1 if a given individual
n is affiliated with the Muslim religion. The variable Christian, is a dummy that takes a value of 1 if a given individual n is affiliated
with a Christian religion. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is
represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.22 Channels and Mechanisms: How education may attenuate ethnic tolerance

Below in Table B36 we replicate the analysis of the impact of schooling on religious tolerance,
but now focusing on another question of the survey referring to ethnic instead of religious
tolerance. In particular, we make use of the question "Taking into account the diversity of
ethnicities in the village, I trust people withe same ethnicity as mine more", where again the

answer option range from 1 (Strongly Agree) to 4 (Strongly disagree).

We find that ethnic tolerance is not affected by schooling. One possible explanation could be
that the Indonesian state ideology Pancasila — which was taught in school — stresses as one
of the five fundamental principles the importance of religious freedom and tolerance, while
an analogous emphasis on ethnic relations is absent. Another plausible explanation is that
traditionally inter-ethnic trust has been significantly higher in Indonesia than inter-religious
trust (which may have triggered the particular emphasis of Pancasila on addressing the main
source of tension: religious sectarianism). Indeed, in our IFLS survey wave only 18.6 percent
of respondents are classified as having high levels of inter-religious trust, while for inter-ethnic

trust the number is much larger (32.4 percent).

Table B36: Societal channels: Ethnic tolerance

Dep. Variable: Trust - Ethnicity, (1) (2) (3) (4)

(# Schools / # Children); * Post-1962 Cohorts, -0.00483  -0.00281  -0.00550  -0.00376
(0.0159)  (0.0160)  (0.0165)  (0.0166)

Observations 10,531 10,531 9,790 9,790
R-squared 0.095 0.104 0.095 0.104
District FEs Yes Yes Yes Yes
Cohort FEs Yes Yes Yes Yes
Gender No Yes No Yes
Ethnicity No Yes No Yes
Religion No Yes No Yes
Cohorts 1945-1973 1945-1973 1950-1973 1950-1973

NOTE: The unit of observation is an individual n born in district i. The sample covers all individuals surveyed in the Wave 5 of the IFLS
SURVEY. Estimates reported in the first (last) two columns are obtained using all individuals born between 1945 and 1972 (1950 and 1972).
OLS estimates are reported in all columns. Trust - Ethnicity, is used as continuous variables ranging from 0 to 3, treating the scales of
the survey questions as cardinal. Additional details are provided in the text. The variable (# Schools/# Children); represents the number
of primary schools constructed under the INPRES program per 1,000 school-aged children in a district . The variable Born after 1962,
is a dummy that takes a value of 1 if a given individual n was born after 1962 in district i. Robust standard error clustered at the district
level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.23 Channels and Mechanisms: Voice versus violence

In this Online Appendix we discuss the construction of a measure of non-violent events using the
Sydney Morning Herald (of Section 8.3 of the main text) and show robustness to an alternative
variable construction algorithm and to alternative data sources. Our approach to construct a geo-
referenced dataset of non-violent related events in Indonesia is very similar to the methodology
used to identify conflict-related events in the main analysis. The only difference lies in the set
of keywords, as to identify non-violent related events we use the keywords "demonstration",
'march’, "gather", "manifestation" and "picket". We used natural language processing algorithms
to analyse the content of all articles, storing all sentences with at least one non-violent, related
term (excluding those where a conflict related term was also present in the same sentence).
Finally, we started out using a Named Entity Recognition algorithm to identify all locations

referred to, and then matched locations to geo-coordinates.

As first robustness check, we shall below in Table B37 be more restrictive in excluding articles.
In particular, we follow exactly the approach described above, but exclude now not only the
articles where a conflict related term is present in the same sentence, but further remove articles
with a conflict related term included anywhere in the article. This more radical approach may
well result in an excessive exclusion of valid articles. The results of robustness Table B37 turn

out to be very similar to the main Table 9 of Section 8.3 of the main text.

As a next step, we compare our main measure of non-violent protest to analogous variables
from alternative datasets, and replicate the analysis for such alternative data. Reassuringly, our
measure yields very similar values as the established dataset GDELT for the years of temporal
overlap (1979-1994). The protest measure of GDELT takes a mean value of 0.021 while our
measure has an average of 0.020. Importantly, in around 95 percent of cases our non-violent

episodes variable takes the same value as the GDELT protest measure (both 0 or both 1).

The specification we run is given by

Schools Built
Dep. Variable;; = o + 6# ¢ OO, el x Years since 1978; + FE; + FE; + €,
#Children

%

with the three different dependent variables (defined at the district-year level) being the following:
"Conflict Episode" (which corresponds to the dependent variables used in the main analysis),
"Pacific Episode" (coded using the aforementioned keywords), and finally "A Pacific Episode -
Conflict Episode" (coded as the difference between the two variables defined above). This last,
relative measure can take values 1 (in a district-year with pacific events and no conflict events),
0 (in a district-year with both pacific and conflict events or no pacific and no conflict events), or

-1 (with conflict events and no pacific events). All other variables are defined as above in the
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Table B37: Robustness: Conflict events vs pacific events

Panel A

Conflict Events Pacific Events A Pacific - Conflict
Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6)
(# Schools / # Children); * Post-1978, -0.0127%**  -0.0173*** 0.00349  -0.00549 0.0162***  0.0119

(0.00448)  (0.00610)  (0.00273) (0.00814)  (0.00408) (0.0103)

Observations 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.345 0.464 0.284 0.400 0.235 0.347
District FEs Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend No Yes No Yes No Yes
Province x Year FEs No Yes No Yes No Yes
Sample Mean .08 .08 .013 .013 -.065 -.065
Panel B

Conflict Events Pacific Events A Pacific - Conflict

Dep. Variable: Conflict Episode; (1) (2) (3) (4) (5) (6)

(# Schools / # Children); * Years since 1978, -0.00146***  -0.00305%** 0.000297  -0.000535 0.00176***  0.00251%**
(0.000421)  (0.000705)  (0.000216) (0.000489)  (0.000401)  (0.000913)

Observations 11,560 11,560 11,560 11,560 11,560 11,560
R-squared 0.346 0.465 0.284 0.400 0.236 0.347
District FEs Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes
District-Specific Linear Trend No Yes No Yes No Yes
Province x Year FEs No Yes No Yes No Yes
Sample Mean .08 .08 .013 .013 -.065 -.065

NoOTE: The unit of observation is a district ¢ and year t. The sample covers 289 districts across 26 provinces over the period 1955-1994. LPM estimates are
reported in all columns. In columns 1 and 2 the dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year t.
Columns 3 and 4 have as dependent variable a dummy that takes a value of 1 if a peaceful protest was observed in district ¢ and year ¢. In columns 5 and 6
the dependent variable is the difference between peaceful and violent events observed in district ¢ and year ¢. The dummy Post-1978, takes a value of 1 for
the years after the first year when we expect the program to deploy major effects (which is when the first INPRES cohort reaches the critical age for being
recruitable for fighting — see discussion in Section 5.3). The variable (# Schools/# Children); represents the number of primary schools constructed under the
INPRES program per 1,000 school-aged children in a district i. The variable Years since 1978, is a measure that until 1978 takes value 0, in 1979 takes value 1,
in 1980 takes value 2, and so on. The conflict and protest data was constructed using the Sydney Morning Herald, following the approach described in Sections
4.1, 8.3 and B.23. Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, **
p < 0.05, ¥*¥* p < 0.01.

baseline analysis. Figure B4 plots the evolution over time of these measures.

Table 9 in the main text has displayed the main results on "violence versus voice". Below we
display a set of additional tables, replicating among others the results for the alternative datasets
GDELT and ICEWS, in Tables B38 and B39, respectively. While for GDELT data we find
a quantitatively small protest-decreasing effect for education, with ICEWS we find the same
non-result on protests as with our main measure. Importantly, in all cases we always find that A
Pacific - Conflict, the relative scope for peaceful protests rather than violent conflict, is increased
by more INPRES schools (imprecisely estimated for GDELT, and statistically significant for
ICEWS).
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Figure B4: Evolution of conflict and protest events over time
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SOURCE: Authors’ computations from own conflict and (pacific) protest data. Conflict data is obtained using the procedure
described in Section 4.1. Protest data is obtained using the procedure described in Section 8.3.

Table B38: Conflict events vs protest events: Alternative sources (GDELT (2018) data)

(1) 2) 3)

Dep. Variable: Conflict Episodey  Protest Episode;; /A Protest - Conflict;

(# Schools / # Children); * Years since 1978, -0.00201*** -0.00147*** 0.000537
(0.000628) (0.000452) (0.000674)
Observations 10,404 10,404 10,404
R-squared 0.624 0.426 0.374
District FEs Yes Yes Yes
Year FEs Yes Yes Yes
Province x Year FEs Yes Yes Yes
Sample Mean 41 A1 -3

NoOTE: The unit of observation is a district ¢ and year ¢t. The sample covers 289 districts across 26 provinces over the period 1979-2014. LPM estimates
are reported in all columns. In column 1 the dependent variable is a dummy that takes a value of 1 if a violent conflict event was observed in district ¢
and year t. Column 2 has as dependent variable a dummy that takes a value of 1 if a peaceful protest was observed in district 4 and year ¢. In column 3
the dependent variable is the difference between peaceful protest and violent conflict events observed in district ¢ and year ¢. The variable (# Schools/#
Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district . The variable
Years since 1978 is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. Conflict and protest data from GDELT
(2018). Robust standard error clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05,
*xK p < 0.01.
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Table B39: Conflict events vs protest events: Alternative sources (ICEWS (2018) data)

1) (2) (3)

Dep. Variable: Conflict Episode;; Protest Episodey; /A Protest - Conflict;

(# Schools / # Children); * Years since 1978, -0.00161* 0.000827 0.00244**
(0.000960) (0.000708) (0.00106)

Observations 5,780 5,780 5,780

R-squared 0.501 0.437 0.249

District FEs Yes Yes Yes

Year FEs Yes Yes Yes

Province x Year FEs Yes Yes Yes

Sample Mean 4 .16 -.24

NoTE: The unit of observation is a district ¢ and year t. The sample covers 289 districts across 26 provinces over the period 1995-2014. LPM estimates
are reported in all columns. In column 1 the dependent variable is a dummy that takes a value of 1 if a violent event was observed in district ¢ and year ¢.
Column 2 has as dependent variable a dummy that takes a value of 1 if a peaceful protest was observed in district ¢ and year ¢. In column 3 the dependent
variable is the difference between peaceful and violent events observed in district ¢ and year t. The variable (# Schools/# Children); represents the number
of primary schools constructed under the INPRES program per 1,000 school-aged children in a district ¢. The variable Years since 1978+ is a measure that
until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. Conflict and protest data from ICEWS (2018). Robust standard error
clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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B.24 Channels and Mechanisms: Conflict data from GDELT (2018) until 2005

As mentioned above, GDELT (GDELT (2018)) has changed from an annual resolution up to
2005 to a monthly, resp. daily resolution later on. Such a change in precision could result
in non-classical measurement error. Hence, as a robustness check, we replicate in the current
Online Appendix B.24 the analysis of GDELT conflict data of Appendix A.11, but restricting
the sample to the pre-2006 period. The results are —if anything— stronger.

Table B40: Robustness: Conflict data from GDELT (2018) until 2005

) (2) (3)

Dep. Variable: Conflict Fventsy  Protest Events;; A Protest - Conflicty

(# Schools / # Children); * Years since 1978, -0.00344*** -0.00131%** 0.00213**
(0.000886) (0.000362) (0.000821)

Observations 7,803 7,803 7,803

R-squared 0.582 0.400 0.421

District FEs Yes Yes Yes

Year FEs Yes Yes Yes

Province x Year FEs Yes Yes Yes

Sample Mean .29 .06 -.23

NOTE: The unit of observation is a district ¢ and year t. The sample covers 289 districts across 26 provinces over the period 1979-2005. LPM estimates
are reported in all columns. In column 1 the dependent variable is a dummy that takes a value of 1 if a violent conflict event was observed in district ¢
and year t. Column 2 has as dependent variable a dummy that takes a value of 1 if a peaceful protest was observed in district ¢ and year ¢. In column 3
the dependent variable is the difference between peaceful protest and violent conflict events observed in district ¢ and year ¢. The variable (# Schools/#
Children); represents the number of primary schools constructed under the INPRES program per 1,000 school-aged children in a district i. The variable
Years since 1978+ is a measure that until 1978 takes value 0, in 1979 takes value 1, in 1980 takes value 2, and so on. Conflict and protest data from
GDELT (2018). Robust standard errors clustered at the district level are reported in parenthesis. Statistical significance is represented by * p < 0.10, **
p < 0.05, ¥** p < 0.01.
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