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1 Introduction

From the propagation of microeconomic shocks into the aggregate economy to the deter-

minants of international trade flows to the sources of heterogeneity in firm size and perfor-

mance, firm-to-firm connections in production networks are increasingly viewed as playing

a fundamental role in shaping economic outcomes. Recent research has taken advantage of

the proliferation of data on international trade transactions and firm-to-firm connections

in domestic production networks to establish a set of common empirical regularities on

buyer-seller relationships and the evolution of the production network. These regularities,

or stylized facts, have in turn disciplined approaches to modeling and testing the nature of

firm-to-firm connections and their consequences.

Production networks are fundamentally sparse. Firms make finite and discrete trans-

actions, but, even for narrowly-defined products, there are large numbers of buyers and

sellers, meaning most buyer-seller pairs are not linked. This fundamental sparsity, coupled

with firm heterogeneity, implicitly disciplines the structure of production network. This

paper shows that most of the established stylized facts on firm-to-firm networks are, in

fact, not informative for developing associated models on how buyer-seller relationships are

established, nor for guiding related empirical tests. Conditional on buyer and seller hetero-

geneity, a simple allocation model with purchases from buyers randomly assigned to sellers

based solely on buyer and seller size is equally capable of generating a sparse production

network and the additional empirical facts used to motivate, and often verify, more complex

models of firm-to-firm connections.

This simple allocation model of production networks, henceforth the “elementary” model,

generates a rich set of statistical relationships that match those from numerous existing

datasets. A key point is that as the data becomes more disaggregated, the more sparse,

granular, and stochastic it becomes. A discrete, stochastic model thus provides a more real-

istic characterization of data than a continuous, deterministic model. Continuity itself has

implications for network structures, necessitating the introduction of additional mechanisms

to explain certain network features. Forgoing continuity, generally assumed for modeling

simplicity, firm heterogeneity can result in rich network structures that match the data well.

In addition to matching existing stylized facts and empirical results, we develop the

general properties of the elementary model, characterizing the families of statistics it gen-
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erates. Rather than having to take every empirical prediction of a model to the data, the

researcher can easily pin down the corresponding the prediction of the elementary model

for any empirical fact in a given family. This paper focuses on three issues confronting

researchers deciding how to present empirical characteristics of their data: (1) What statis-

tical transformation should be applied? (2) What level of aggregation should be considered?

(3) What variables of interest should be examined and how should they be linked? Choices

in these three areas collectively determine how a researcher presents empirical findings.

We present the connection of the elementary model to three general classes of statistical

transformations: monotonic statistics such as intensive and extensive margins, order statis-

tics such as percentiles, and higher-order relationship statistics such as assortativity. Then,

we show that all results from the elementary model that hold at a disaggregated level are

maintained with aggregation. Finally, if two variables of interest, such as productivity and

size, are first-order stochastically monotone in the realization of any variable that the model

directly generates, e.g., pairwise flows between buyers and sellers, their correlation can be

pinned down. These findings suggest that, on the one hand, the elementary model provides

a natural benchmark for characterizing real-world production networks due to its simple

yet rich properties; on the other hand, a large group of statistics may not be informative in

providing insights on firm-to-firm relationships beyond random matching.

Our findings suggest that the elementary model is a powerful tool to select informative

statistics and benchmark theories. Researchers can use the elementary model to discern

statistics that are “instructive” for the development of more elaborate models of production

networks. “Instructive” statistics can take two broad forms. First, those statistics which

cannot be produced by the elementary model because they have a different sign than that

predicted by the elementary model. Second, related to a suggestion by Armenter and

Koren (2014), while the signs of some statistical relationships may not be informative, the

magnitudes may be if they differ substantially from the predictions of the elementary model.

We use Norwegian transaction level trade data to illustrate both ideas with examples.

In addition, we propose to use the elementary model as a benchmark to select theories.

This is a slightly different thought experiment: instead of starting from data and the el-

ementary model with minimum structure, we start from a candidate model and compare

its explanatory power to the elementary model. For example, the matching probability

between buyers and sellers (pij) across different buyer-seller bins in the data is close to
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what is predicted by the elementary model. In contrast, models emphasizing assortativity

in matching perform much worse in every buyer-seller bin. This poor performance may

appear puzzling at first glance as these models are developed to understand firm-to-firm

networks. However, while models as such are intended to explain how buyers match sellers

– the data counterpart is the distribution of pij – what they actually match are certain

statistics of pij , such as the sign of assortativity. To match these statistics, strong assump-

tions are often imposed, which generate greater prediction errors in untargeted statistics

and ultimately in the distribution of pij .

Finally, in the last part of the paper, we approach theory comparison from a more

structural perspective and introduce the idea of Bayesian model selection. We show that

Bayes’ theorem gives a natural characterization of how we move from empirical evidence

to theory. It enables us to think about preferences for a certain theory as a product of

its ability to explain the data and prior beliefs compared to alternatives. We show that

the elementary model is so far the best baseline alternative, for selecting richer structural

models of production networks.

The primary concern about random-allocation models is that they are statistical models

lacking economics. However, we show that if the allocation is designed with the correct

economic counterpart, it can be viewed as an intermediate step of a discrete choice model.

The elementary model can be derived from a competitive environment, with Eaton and

Kortum (2002, henceforth, EK) being a special case.1 This view further suggests that

when linking a model to data, the allocation problem needs to be designed with the correct

data counterparts. Otherwise, implicitly, we are imposing additional assumptions (often

inconsistent with empirical context or the model itself) on the distribution of firm-to-firm

sales. We use the firm-level balls-and-bins models designed by Bernard et al. (2018a) and

Armenter and Koren (2014) as examples to illustrate this point. These balls and bins models

fail to match relevant moments in the data either because the balls-and-bins counterpart is

misspecified or because of additional assumptions made in the simulations.

The elementary model can also be used to understand network adjustments to shocks.

We show a rich set of partner switching patterns between Mexican exporters and US im-

1The model of Ellison and Glaeser (1997), where the geographic concentration of an industry is an
outcome of a sequence of profit-maximizing location decisions made by individual plants, is one example of
the general model presented Section 5.2. In Ellison and Glaeser (1997), idiosyncratic location preferences
are assumed to follow Weibull distribution, which is one example of an distribution that follows the FSD
ordering.
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porters in response the end of the Multifiber Arrangement (MFA) documented in Sugita et

al. (forthcoming) can be explained by the elementary model. In other words, the changes

in the existing network in response to shocks may not be sufficient to identify specific, more

complex matching mechanisms between buyers and sellers. As transactions represent the

foundation of any aggregate relationship, the findings also raise concerns regarding whether

existing empirical regularities at more aggregate levels can distinguish between competing

economic models. We illustrate this point by focusing on firms, showing that heterogeneous

responses of firms to improved market access or exchange rate changes in Berman et al.

(2012) can be generated by heterogeneous firms randomly reshuffling buyer-seller links in

response to increased foreign demand rather than pricing-to-market adjustments.2

Thus far, we have emphasized the importance and potential benefits of our findings. It

should be clear that our work also has important limitations. The approach is not useful in

uncovering the microfoundations of firm heterogeneity. In most of the paper, we implicitly

treat buyer and seller heterogeneity as model primitives, the identification of which would

require additional data and research design. Therefore, our work should be viewed as

complementary to studies that examine the sources of firm heterogeneity (e.g., Atkin et al.,

2017; Cai and Szeidl, 2018; Bernard et al., 2022; Alfaro-Urena et al., 2022; Miyauchi, 2021).

The elementary model is a balls-and-bins model which is part of a set of classic prob-

lems in probability theory with wide applications in statistics and computer science.3 Our

paper is related to Armenter and Koren (2014), who first brought the balls-and-bins to

international trade, and explained why the categorical nature of trade data may provide

challenges in distinguishing sample zeros from fundamental zeros. In production networks

there is a fundamental sparsity: buyers do not purchase from every seller of a given prod-

uct. This fundamental sparsity, coupled with firm heterogeneity, implicitly disciplines the

structure of production network. We augment Armenter and Koren (2014) and consider

a general version of the allocation problem, in which the number of transactions differs

across buyers, and buyers and sellers are allowed to overlap. We characterize the model’s

statistical features under general classes of statistical transformations, where the extensive

margin is one special case. It is important to note that the goal of this paper is not to

2As Berman et al. (2012) correctly note, their findings are consistent with any models where the demand
elasticity decreases with firm performance.

3See Mitzenmacher and Upfal (2017) and Raab and Steger (1998) for a brief overview. Additionally,
Roch (2015) provides an excellent reference for the modern treatment of discrete probability.
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propose any particular model or to explain any particular set of facts. Rather, we focus

on the basic structures required for a model to adequately explain empirical findings on

production networks, acknowledging the discreteness and sparseness nature of firm data at

a very disaggregated level.4

Our work contributes to the growing literature on domestic and international production

networks. Beginning with Blum et al. (2010, 2012) (Chile and Colombia), researchers have

made use of the increasing number of datasets with information about the identities of both

buyers and sellers.5 These papers document stylized facts about the firm-to-firm networks,

develop theoretical models and test their predictions. Chaney (2014) models the current and

future export destinations of French firms; Bernard et al. (2018a) examine the role of buyer

and seller heterogeneity and firm-level adjustments to trade shocks; Bernard et al. (2022)

consider the role of the network in firm size heterogeneity; and Sugita et al. (forthcoming)

examine the removal of the Multi-Fiber Arrangement on Mexican textile exports to the

US. We offer a benchmark model of firm-to-firm connections based on random matching

and firm heterogeneity, emphasizing the sufficient model structure in matching rich existing

stylized facts and comparative statics.

In terms of spirit, the emphasis of the paper on sufficient model structure in explaining

rich empirical facts is related to Chaney (2018), who provides sufficient conditions for trade

being inversely proportional to distance, and to Costinot (2009), who offers a unifying

perspective on the fundamental forces that shape comparative advantage. Our work is

also related to a large literature on model selection.Even though model-selection methods

have become increasingly important in other scientific disciplines (Hooten and Hobbs, 2015;

Madigan and Raftery, 1994), they are not commonplace in research on international trade or

production networks. We show the problem of model selection generally exists in empirical

production network studies, and we propose to use the elementary model to select theory

4In a recent paper, Herkenhoff et al. (2021) explain a similar set of existing stylized facts on exporters
and importers in international trade by re-interpreting the Krugman (1980) model with randomly bundled
varieties and statistical reporting thresholds for cross-border transactions. Their approach follows much of
the literature by starting with a continuum of heterogeneous firms and adding constraints to match the
sparse nature of the data. Sheveleva (2022) presents a statistical model with random product size focusing
on explaining the intensive profitability of multi-product exporters.

5See among others Atalay et al. (2011) (US), Bernard et al. (2018b) (Colombia), Kramarz et al. (2020)
(France), Carballo et al. (2018) (Costa Rica, Uruguay and Ecuador), and Lim (2020) (US). Bernard and
Moxnes (2018) survey the recent literature. Relatedly, there is a large literature on the macroeconomic
consequences of the microstructure of production networks. Some papers utilize micro-level firm-to-firm data
(e.g., Lim (2020), Carvalho et al. (2021)), while others do not (e.g., Baqaee and Farhi (2019)). Carvalho
and Tahbaz-Salehi (2019) provides a review of the literature.
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and benchmark empirical results.

In terms of results, our paper is related to research on how random allocation may lead

to seemingly nonrandom outcomes. Ellison and Glaeser (1997) study whether the observed

levels of geographic concentration of industries are greater than would be expected to arise

randomly. Dingel and Tintelnot (2020) note that granularity could lead to confusion be-

tween sample zeros and fundamental zeros in spatial studies. Borusyak and Hull (2021)

show how random shocks may lead to nonrandom exposure and bias estimation results.

While the above-mentioned papers focus on geography, our interest is in production net-

works. In terms of technicalities, the paper introduces coupling methods to the production

network literature and demonstrates that they are powerful tools for stochastic comparative

statics analysis and in characterizing real-world firm networks.

The difficulty in describing production networks lies in their complex structure. In this

paper we show the topology of production networks is primarily governed by simple yet

robust organizing principles. In this regard, our paper contributes to the large literature

on statistical mechanics of complex networks.6 The networks studied in this literature

(e.g., world wide web, social network, nervous system) exhibit very distinct topological

and dynamic features, and hence are explained by different network formation principles

(Barabási and Albert, 1999; Bollobás et al., 2001; Albert and Barabási, 2000).7 Moreover,

none of these papers provides analytical results on comparative statics.

Overall, the contribution of this paper is threefold. First, we show that many well-

established statistical relationships may not help in improving our understanding of pro-

duction networks. Second, we propose an elementary model to characterize the organiza-

tional principles of production networks and describe the general statistical families that

may subject a more elaborate model to underidentification concerns. Finally, we demon-

strate that the model is a useful benchmark for selecting informative statistics and for model

comparison. As micro-level data from firms becomes increasingly available, the number of

relationships or variable combinations that can be examined will rapidly grow. Our work

will serve as a useful guide for connecting data to theory.

6See for example Barabási and Albert (1999); Albert and Barabási (2002).
7One distinct feature of networks studied in these papers is positive degree assortativity (instead of the

negative degree assortativity found in production networks). This among other things is explained by the
growth and the preferential attachment principles. Generally speaking, these papers are more interested
in the development (expansion) of networks. In spirit, they are closer to Chaney (2014), which studies the
dynamic formation of an international network of exporters. A more detailed discussion of this model feature
can be found in Chaney (2016).
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The rest of the paper is organized as follows. Section 2 presents a set of existing stylized

facts on production and trade networks. Section 3 develops the elementary model and the

theoretical counterparts of the stylized facts. Section 4 studies the general properties of the

model. Section 5 derives the model from a competitive environment. Section 6 demonstrates

that the model also matches a rich set of data responses to shocks. Section 7 shows that the

elementary model is a useful benchmark in developing “instructive” statistics and informing

model construction and selection. Section 8 concludes.

2 Stylized Facts on Production Networks

We first briefly review the existing empirical literature on firm-to-firm production networks,

both international and domestic. We highlight a set of facts common to empirical work on

a variety of countries. These facts have been the basis for many of the models of firm-level

production networks.

Fact 1. Production networks, both domestic and international, are sparse.

In every production network examined to date, most buyers and sellers are not con-

nected. In Japan (Bernard et al., 2019), fewer than 1 in 130,000 potential buyer-seller

connections are active in the domestic production network, while in Belgium, the figure is

1 in 23,000 (Dhyne et al., 2015).

Even conditioning on firm participation in a particular international market, buyer-seller

connections are sparse. For Colombia, Bernard et al. (2018b) find that fewer than 1 in 15,000

connections exist between Colombian firms that import and foreign firms that export to

Colombia. Comparable numbers are 1 in 12500 for French exporters and importers from

France and 1 in 9000 for Norwegian exporters and firms that import from Norway (Kramarz

et al. 2020 and Bernard et al. 2018a).

Fact 2. Firms in a production network are heterogeneous in the number of links and the

value per link.

Both the out-degree (number of buyers per seller) and in-degree (sellers per buyer) show

substantial dispersion across firms. The most connected exporters (90th percentile) have 6.5

to 11 times as many foreign customers as the median exporter in Costa Rica, Uruguay and

Ecuador (Carballo et al., 2018). Similar dispersion of connectivity is found in Norwegian
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exporters (Bernard et al., 2018a), Colombian importers (Bernard et al., 2018b) and in

US, Japanese and Belgian domestic production networks (Atalay et al., 2011; Bernard and

Moxnes, 2018; Bernard et al., 2022).

The value of trade between pairs of firms is also highly skewed. For the Belgian domestic

network (Dhyne et al., 2015) and for Costa Rican, Ecuadorian and Uruguayan exporters

(Carballo et al., 2018), the ratio of the sales of the 90th percentile pair to the 50th percentile

pair is greater than 12.

Fact 3. The largest firms in terms of sales have the most buyers and suppliers and reach

the largest number of markets (cities or countries).

The largest firms in terms of sales account for a large majority of economic activity

in the production network. They have the greatest number of buyers and suppliers and

connect to the most (domestic and foreign) markets, e.g. Japan (Bernard and Moxnes,

2018), Norway (Bernard et al., 2018a), Chile (Blum et al., 2012), and Belgium (Dhyne et

al., 2015).

Fact 4. Negative degree assortativity: Firms with many connections, on average, trade with

firms that are less well connected.

Production networks typically exhibit significant negative degree assortativity: highly

connected firms sell to more customers, but their average customer purchases from a rela-

tively small number of suppliers. The same is true on the purchasing side, highly connected

buyers, on average, buy from less-connected sellers. This relationship has also been con-

firmed using production-network data from various countries, time periods, and for both

within- and cross-country networks (e.g., Lim 2020 for US Compustat data; Bernard et al.

2019 for Japan; Bernard et al. 2022 for Belgium; Bernard et al. 2018b for Colombia).

Fact 5. Hierarchy: Well-connected firms trade with a range of partners from the best-

connected to the least. Firms with few connections match with well-connected partners.

Notably, negative degree assortativity does not mean that well-connected sellers only

sell to poorly connected buyers. The best connected (most productive) firms sell to a wide

range of buyers, from the best connected (most productive) down to the least connected

(least productive). Less connected (low-productivity) sellers, however, only connect to

high-productivity partners. The hierarchical nature of production networks is presented
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explicitly in Bernard et al. (2019) and Blum et al. (2012), but it is a common feature shared

by many datasets and has been implicitly or explicitly incorporated in most of the related

production network models.

While these facts do not cover the entirety of the empirical work on firm-to-firm pro-

duction networks, they are often used to motivate theoretical models of buyer-seller, or

importer-exporter, interactions. In particular, sparseness of connections in production net-

works has important implications for the modeling of firm-to-firm connections. Models with

continuity generally require fixed costs to prevent all (or most) firms from buying or selling

to one another. Assortativity on the other hand motivates various matching and sorting

mechanisms. In such instances, only the best sellers find it profitable to incur fixed costs

and reach small buyers (e.g. Bernard et al., 2018a; Bernard and Moxnes, 2018; Lim, 2020;

Sugita et al., forthcoming).

In the next section, we ask whether these empirical regularities on buyer-seller matches

are informative and show that a simple discrete model of buyer-seller transactions based on

random matching and firm heterogeneity can match these facts.

3 A Random Allocation Model

We model the assignment of transactions from buyers to sellers as balls falling into bins.

By doing so, we capture the discrete nature inherent in the micro-level data, as a firm’s

revenue consists of a finite number of orders placed by its customers, each of which is a

discrete unit of observation and is the micro-foundation of more aggregate statistics at the

level of the firm, buyer-seller, country, or origin-destination.

3.1 Basic Environment

Consider an economy with M ∈ N buyers, indexed by subscript j ∈ {1, 2, ...,M}. Each

buyer makes bj ≥ 0 purchases and buyers are ordered such that bj ≤ bj+1. By one purchase

we mean one-unit of a product. To fix ideas, we first consider the case in which all purchases

are identical in value (we relax this assumption in Appendix A.4).8 Similarly, let N ∈ N

be the number of sellers, indexed by subscript i ∈ {1, 2, ...,N}. The probability that any

8As shown in Appendix A.4, relaxing this assumption does not change the results presented in the paper
in any meaningful way. A sufficient assumption is that a firm’s total sales are positively related to total
number of transactions, which is supported by all transaction-level data sets used to date.
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purchase lands on seller i is characterized by si, with si ∈ [0, 1) and
∑

i si = 1. Sellers are

ordered such that si is weakly increasing in i.9 As in equilibrium the expected size of a

seller will be positively associated with s, we sometimes refer to s and b as seller size and

buyer size, respectively.

The setup is simple and is based on only two natural and verifiable assumptions: (1)

buyers vary in terms of their level of purchases while sellers have different abilities to attract

buyers; and (2) buyer-seller matches are not deterministic. We refer to the formulation in

terms of s, b and the allocation rule as the “elementary model structure”: any two models

with the same formulation will give rise to the same network structure regardless of their

micro-foundations. Correspondingly, we refer to our model as the “elementary model” of

production networks.

We make no assumptions on how sellers and buyers overlap. A node in the network can

be a buyer and a seller at the same time, with sales and purchases being characterized by s

and b, respectively. If a node has b > 0 and s = 0, it represents a firm with no sales in the

network10; if b = 0 and s > 0, it represents the most upstream producer; and if the realized

assignment for some nodes with s > 0 is zero, those nodes indicate sellers who have had no

network sales in a given period.

In the remainder of this section, we illustrate how the model matches the stylized facts

shown in Section 2. Our main theoretical contribution on the generalized results is intro-

duced in Section 4. As the model belongs to the family of balls-into-bins models, sometimes

when it is convenient, we will use balls and bins to explain the intuition of the results.11

3.2 Extensive Margin

Given the environment, the probability that buyer j matches seller i equals the probability

that the seller receives at least one purchase from j:

pij = 1− (1− si)bj . (1)

9We refer to a function as “increasing” (“decreasing”) if it is strictly increasing (decreasing).
10In datasets on domestic production networks, these firms sell entirely outside the network, i.e. entirely

to individual consumers or to foreign buyers.
11We can view sellers as bins of difference sizes, and buyers making bj purchases as buyers holding bj

numbers of balls. None of the results depend on the assumption that buyers throw balls and sellers are bins,
as will become clear in the subsequent sections.

10



The probability pij is an increasing function of both seller and buyer size: larger sellers

(buyers) are more likely to match partners of a given size than small sellers (buyers). The

size distribution of firms in all datasets is highly skewed, meaning that the majority of firms

have few sales and purchases, si is close to zero and bj is a small number. As a result, pij is

close to zero for most of the firm-firm connections. The model therefore generates network

sparseness (Fact 1).

The expected number of buyers that a seller matches is then given by the sum of pij

over all buyers:

N s
i =

∑
j

pij =
∑
j

(1− (1− si)bj ). (2)

Similarly, the expected number of sellers that a buyer matches is given by

N b
j =

∑
i

pij =
∑
i

(1− (1− si)bj ). (3)

It is easy to verify that N s
i increases in si and N b

i increases in bj . Thus, on average, larger

buyers match more sellers, and larger sellers match more buyers. Intuitively, buyers who

make more purchases have a greater chance of connecting with any seller; hence they are

on average more likely to match with more sellers. Sellers with greater s are more likely to

receive purchases from any buyer and thus are more likely to match with more buyers on

average (Fact 2).

Next, let us consider C ∈ N locations indexed by c ∈ {1, 2, ..., C}. The probability that

seller i exports to location c equals the probability that the seller matches at least one buyer

in c:

P[Dic = 1] = 1−Πj∈c(1− si)bj = 1− (1− si)
∑
j∈c bj , (4)

where Dic is an indicator variable that equals one if seller i sells to c. We use j ∈ c to

indicate buyer j at location c. Therefore, the expected number of locations that a seller

reaches equals

N sc
i =

∑
c

(1− (1− si)
∑
j∈c bj ). (5)

Again, N sc
i increases in si because each element in the sum is an increasing function of

si. This analysis is equivalent to treating all buyers at location c as a single representative

buyer with
∑

j∈c bj purchases, hence the same intuition follows. Similarly, one can show
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that the number of locations that a buyer reaches also increases with its size. Thus the

model matches Fact 3.

3.3 Intensive Margin

Since purchases are of equal size, the total purchases of buyer j from seller i is captured by

the number of orders from j to i, which we denote by xij . The probability that xij = x is

given by

P[xij = x] = Cxbjs
x
i (1− si)bj−x, (6)

where Cxbj denotes the combination formula. Thus, xij follows the binomial distribution

Bin(bj , si). Let Xij denote the expected purchase amount by j from i; we then have

Xij = bjsi. (7)

Thus, the model predicts that large sellers on average sell more to a given buyer and larger

buyers purchase more from a given seller. Equations (2), (3), and (7) suggest that in the

elementary model, heterogeneity in the size distribution of firms naturally translates to

network heterogeneity in the number of links and the value per link (Fact 2).

3.4 Degree Assortativity

Assortativity examines the extent to which a network’s nodes attach to others that are simi-

lar in some way. Although the specific measure of similarity may vary, existing studies often

examine assortativity in terms of a node’s degree. Unlike many other types of networks,

production networks exhibit significant negative degree assortativity. This data feature has

often been used to motivate the modeling of relationship-specific fixed costs. For example,

only the best sellers find it optimal to incur fixed costs to reach small buyers. However,

negative degree assortativity naturally emerges from the elementary model.

The in-degree of a buyer is the number of sellers the buyer matches. Its expected value

is given by equation (3) and increases in bj . The average connections of sellers that a buyer

matches, by the law of iterated expectations, can be written as the sum of each seller’s
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expected total connection times its relative probability of matching that buyer:

N̄ s(j) =

∑
iN

s
i pij∑

i pij
:=
∑
i

N s
i g(i; j),

where N̄ s(j) denotes the expected average out-degree of sellers that buyer j matches, and

the probability mass function g(i; j) :=
pij∑
i pij

gives the relative probability of i matching

j – in other words, g(i; j) characterizes the distribution of sellers conditional on matching

buyer j. Intuitively, if a buyer makes one random purchase, she has a greater probability of

matching with bigger sellers; but if a buyer makes an infinite number of random purchases,

she matches with every seller almost surely. In other words, g(i; j) is more left-skewed for

small buyers, i.e., smaller buyers have relatively greater probability of matching with big

sellers. Thus, the expected average out-degree of sellers that a buyer matches is adversely

correlated with her size and, as a result, with her connections. (Fact 4).12

3.5 Hierarchy

As emphasized in the literature, negative degree assortativity does not mean that well-

connected sellers only sell to poorly-connected buyers. The most productive firms typically

sell to a broader range of buyers, from the most productive (best connected) down to the

least productive (less connected). Low-productivity sellers, on the other hand, only connect

with high-productivity buyers (Bernard and Moxnes, 2018). At first glance, this appears to

be strong support for fixed-cost hierarchy models, where only firms with significant economic

scale can overcome fixed costs and profitably engage with small partners.

However, this finding also arises naturally from the elementary model. The best way

to demonstrate this is to construct a coupling, which we do in the next section, so here we

focus on the intuition. The key is to recognize that although a seller with greater s is more

likely to match any buyer, it is relatively more likely to match small buyers. The intuition

is essentially the same as that underpinning negative degree assortativity. For example,

consider two buyers with b1 = 1, b2 = 100, as well as a seller with s = 0.01. The seller has

1% chance of matching with the first buyer, and 1 − 0.99100 ≈ 100% chance of matching

with the second. In contrast, when s is close to 1, the matching probability for both buyers

12The formal proof is presented in Appendix A.2. In the next section, we also show that this correlation
persists with aggregation, matching the finding of Serrano and Boguná (2003) that the partners of well-
connected countries are, on average, less-well connected themselves.
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is approximately equal to one. While both sellers are quite likely to match with the large

buyer, the large seller has a significantly higher probability of matching with the smaller

buyer (Fact 5).

4 Generalization

The previous section introduced the elementary model and showed how it matches existing

stylized facts on production networks. We now introduce the general properties of the el-

ementary model, characterizing the families of statistics it produces. Data on production

networks are usually quite detailed, hence the number of relationships or variable combi-

nations studied by researchers can grow quickly. Rather than exhausting all combinations

in a dataset and checking the corresponding predictions of the elementary model one at a

time, it is useful to characterize general predictions of the model, pining down the corre-

sponding the prediction for any empirical fact in a given statistic family. Then researchers

can easily employ these results to compare new empirical regularities from their data with

those generated by the elementary model.

We consider three choices confronting researchers deciding how to present empirical

characteristics of their data. (1) What statistical transformation should be applied? In

particular, we examine three classes of statistical transformations: monotone statistics,

order statistics, and higher order relationships. (2) What level of aggregation should be

considered? Depending on the question, the researcher might be interested in transactions,

firm-level variables or even country-level aggregates. (3) What variables of interest should

be examined and how should they be linked? The fundamental of the elementary model

is a firm-to-firm transaction but studies might be interested in characterizing the network

based on firm productivity or other variables. We explore the general properties of the

elementary model along these three dimensions.

4.1 Ranking and Stochastic Dominance Theorems

When dealing with probabilistic models, the ranking theorem and stochastic dominance

theorem are useful tools to facilitate the analysis. Both theorems, in a broad sense, allow

us to compare random variables in the same way that we compare deterministic variables.

We first introduce these two theorems:
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Ranking Theorem. Cumulative GX first-order stochastically dominates (FSD) cumula-

tive GY if and only if for any increasing and piecewise differentiable function u(z),

EGX [u(z)] > EGY [u(z)].

Let � denote first-order stochastic dominance. If there are two random variables such that

X � Y , we also refer to X and Y as statistically ordered in FSD. Intuitively, the ranking

theorem tells us the stochastic ordering (in the first-order sense) of two random variables is

preserved with monotonically increasing transformations.

Stochastic Dominance Theorem. The random variable X � Y if and only if there is a

coupling (X̂, Ŷ ) of X and Y such that

P[X̂ ≥ Ŷ ] = 1,

which holds with inequality for some values. We refer to (X̂, Ŷ ) as a monotone coupling of

X and Y.

A coupling of X and Y, (X̂, Ŷ ), is a joint probability space with its marginal distributions

being X and Y . Not surprisingly, there could be many ways to construct such a probability

space. The right-to-left direction of stochastic dominance theorem says that if we can find

such a probability space, with X̂ ≥ Ŷ being a sure event, then we know that X � Y . The

left-to-right direction of the theorem says that if X � Y , there always exists a coupling

(X̂, Ŷ ) such that X̂ ≥ Ŷ surely.

Intuitively, under random allocation, buyer- and seller-statistics derived from the model

are also random variables. When we use the notion of first order stochastic dominance

to compare random variables, we are anchoring values and comparing probabilities. The

stochastic dominance theorem, on the other hand, allows us to translate the problem to

anchoring probabilities and comparing values. Economic models usually apply functional

transformations on the value side, hence when using the stochastic dominance theorem, we

do not need to alter the anchoring every time when making comparisons. As a result, we

can perform comparative statics for probabilistic models in the same way that we do for

deterministic models. For the interested readers, we provide a more detailed explanation of

the coupling method and its relation to the stochastic dominance theorem with examples

in Appendix A.1.
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4.2 General Statistical Transformations

4.2.1 Monotone Statistics

Denote the assignment result of seller i by xsi = (xi1, ..., xiM) ∈ NM, and let t : RM → R be

some statistical function of xsi .
13 Consider two sellers i and i′, with si > si′ . We can couple

xsi and xsi′ in the following way: first, set x̂si′ = xsi′ . Then, set x̂si as the sum of two random

vectors: the first random vector equals x̂si′ with probability one, and the second random

vector is generated independently according to the distribution of xsi′′ with si′′ = si − si′ .14

That is, x̂si = xsi′ + xsi′′ . Intuitively, the realization of purchases to seller (bin) i can always

be viewed as the union of the realizations in two smaller-sized bins; one with size si′ and

the other with size si − si′ .

Then, instead of directly comparing the statistics of xsi and xsi′ , we only need to compare

the statistics of their coupling. Note that by construction, (x̂si , x̂
s
i′) is a monotone coupling

of xsi and xsi′ . Therefore, for any monotonic t, (t(x̂si ), t(x̂
s
i′)) is also a monotone coupling

of t(xsi ) and t(xsi′). This greatly simplifies the analysis because instead of computing the

exact distribution for every statistic t that we are interested in, we only need to examine

the monotonicity of t. Then, we can directly apply the stochastic dominance theorem to

determine the stochastic ordering of {t(xsi ), t(xsi′)}.

For example, consider the number of buyers that seller i matches with, which we denote

by nsi . The random variable nsi is generated from the following statistical transformation:

t1(xsi ) =
∑

j 1xij>0. It is trivial to show that t1(x̂si′ + x̂si′′) ≥ t1(x̂si′) because the realized

number of balls from each buyer can only weakly increase when we add the realization of

xsi′′ . Therefore by construction,

P[n̂si ≥ n̂si′ ] = 1.

By the stochastic dominance theorem, we then have nsi � nsi′ . The ranking theorem subse-

quently implies that N s
i > N s

i′ .

Formally, given two random vectors X, Y ≥ 0,15 a statistical transformation t is said

13To save notation, throughout the paper, we use t to refer a general statistical transformation and
t1, t2, ... to denote specific statistical transformations (functional forms are specified in the paper) regardless
the dimension of the input vector.

14Two random vectors are said to be equal if they are equal as functions on their probability space. If two
random vectors X and Y are equal in distribution and corr(X,Y) = 1, we say that X and Y are equal with
probability one, or X = Y.

15We follow the convention to express vector inequality in the following way: any two vectors X 5 (=)Y
means that each component of vector X is less (greater) than or equal to each corresponding component of
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to be monotonically increasing if t(X + Y) ≥ t(X) for any realization of X, Y, which

holds with strict inequality for some realizations. Similarly, t is said to be monotonically

decreasing if t(X + Y) ≤ t(X). We then summarize the result in the following proposition:

PROPOSITION 1. For si > si′, t(x
s
i ) � t(xsi′) if t is a monotonically increasing trans-

formation; t(xsi′) � t(xsi ) if t is a monotonically decreasing transformation.

Applying proposition 1, it is immediate that the size of the largest buyer that seller i

matches with FSD that with which seller i′ matches. In contrast, the size of the smallest

buyer that seller i′ matches with FSD that with which seller i matches. As a result, we

will always find that larger sellers match with more dispersed buyers.16

We construct the coupling on the buyer side in a similar way. Denote the assignment

result of buyer j by xbj = (x1j , ..., xN j) ∈ NN . Consider two buyers, j and j′, with bj > bj′ .

First set x̂bj′ = xbj′ . Then, let x̂bj equal the sum of two random vectors: one equals x̂si′ with

probability one, and the other is generated independently according to the distribution of

xbi′′ with bi′′ = bi − bi′ . Intuitively, as purchases are not ordered, making bj purchases can

always be viewed as one first make bj′ and then the other bi − bi′ purchases. Then, the

following proposition is immediate:

PROPOSITION 2. For bj > bj′, t(x
b
j) � t(xbj′) if t is a monotonically increasing trans-

formation; t(xbj′) � t(xbj) if t is a monotonically decreasing transformation.

4.2.2 Order Statistics

Next, we consider another class of commonly used statistical transformations: order statis-

tics. Most order-statistic functions, such as quantiles or percentiles, are not monotone.

Nevertheless, given our environment, the sample average of these statistics can be easily

ordered. We use percentiles to illustrate the point. One can construct similar proofs to

examine other order statistics and the associated rank statistics.

vector Y. If X ≤ (≥)Y, it means that X 5 (=)Y and X! = Y.
16It should be noted that in practice, all empirical correlations are calculated using actual assignments

rather than expected assignments. When comparing firms based on realized assignments, the sufficient
condition for our results to hold is that the variable of interest in the x-axis must follow a monotonic
probability ratio ordering (MPR), a condition that is stronger than first-order stochastic ordering but weaker
than monotonic likelihood ordering (Eeckhoudt and Gollier, 1995). Reassuringly, with the elementary model,
all x-axis statistics used in the literature to date satisfy this condition. We present the formal proof as a
robustness check in Section A.5.
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Without loss of generality, consider the τth percentile buyer of seller i. Let r(τ ; i) denote

its expected rank. Obviously, r(τ ; i) is an increasing function of τ : higher the percentile, by

definition we refer to the larger-valued buyer in the matched list. Denote ξi(z) :=
∑z
j=1 pij∑
j pij

as the expected fraction of buyers whose rank is smaller than z. By definition, r(ξi; i) = z,

and the inverse function r−1(z; i) is also an increasing function.

Let g(j; i) :=
pij∑
j pij

. Just as g(i; j) has the monotone likelihood ratio (MLR) property

proved in Section A.2, it is easy to verify that g(j; i) also has the monotone likelihood ratio

(MLR) property and hence can be FSD ordered in i. Therefore, it is immediate that

ξiz ≥ ξi′z for all z by the definition of FSD, i.e., the expected fraction of buyers that are

below an arbitrary rank is always greater for large sellers. By definition r−1(z; i) := ξiz,

hence it is immediate that r−1(z; i) ≥ r−1(z; i′). Combining this with the fact that r−1(z)

increases in z, we conclude that r(τ ; i) ≤ r(τ ; i′) for all τ . A similar proof can be constructed

for buyers.

PROPOSITION 3. The average rank of the τth percentile buyer (seller) that a seller

(buyer) matches with decreases in seller (buyer) size.

Intuitively, if a seller increases its size, it becomes more likely to match with every buyer,

but more importantly, it becomes relatively more likely to match with smaller buyers. This

pushes up every existing buyer’s percentile, which in turn means for a given percentile, the

expected rank of its associated buyer decreases.

4.2.3 Higher-order Relationships

Production network properties are often described by higher-order relationships. The degree

assortativity discussed in the previous section is one example, but researchers might want

to look at other characteristics other than degree and higher-order relationships beyond the

second-order. In this subsection, we show how to pin down the elementary-model predictions

on higher-order relationship statistics in general.

The trick is to note that a higher-order statistic can be viewed as the composition of a

series of statistical transformations. Thus, we can construct a statistic generating function

for kth-order relationships. Let φkt (ι) describe the kth-order statistics given a statistical

function t. This function applies to both buyers and sellers with a slight abuse of notation:

when ι = i, the statistics are calculated for a seller, and when ι = j, they are calculated
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for a buyer. We use −ι to denote partners on the other side of the relationship: when ι

refers to a seller, then −ι refers to a buyer and vice versa. The variable xι describes the

assignment result. Then, the function φkt (ι) can be constructed as:

φkt (ι) =

E(t(xι)) if k = 1,∑
−ι φ

k−1
t (−ι)p−ιι∑
−ι p−ιι

=
∑
−ι φ

k−1
t (−ι)g(−ι; ι) if k > 1.

For instance, let t1(xι) =
∑

ι 1xι>0, where xι refers to the realized assignment for ι. Buyer

j’s expected connectivity can therefore be written as φ1
t1(j), and the expected average

connectivity of its matched seller is φ2
t1(j). Generally speaking, assortativity is nothing but

a correlation between one second-order and one first-order statistic.

Recall that the distribution g(i; j′) FSD g(i; j) when bj > bj′ , and the distribution

g(j; i′) FSD g(j; i) when si > si′ . By iteration, we arrive at the following proposition:

PROPOSITION 4. Let φkt (ι) and φk
′
t′ (ι) be two higher-order relation statistics across

buyers (or sellers). When both transformations t and t′ are monotonically increasing or

decreasing, φkt (ι) and φk
′
t′ (ι) are positively associated if (−1)k+k′ = 1 and negatively associ-

ated if (−1)k+k′ = −1. When one of t and t′ is monotonically increasing and the other is

monotonically decreasing, φkt (ι) and φk
′
t′ (ι) are positively associated if (−1)k+k′ = −1 and

negatively associated if (−1)k+k′ = 1.

For example, consider the out-degree of sellers against the expected average in-degree of

buyers with which sellers match. The latter is given by:

N̄ b(i) =

∑
j N

b
j pij∑

j pij
:=
∑
j

N b
j g(j; i) = EGi(N

b
j ).

By definition N̄ b(i) := φ2
t1(i) and N̄ s

i := φ1
t1(i). Since t1 is monotonically increasing, and

k + k′ = 3, from proposition 4 we immediately know that sellers’ connections also exhibit

negative assortativity, i.e, the average customer of a highly connected seller purchases from

a relatively small number of suppliers.

We can also view φkt (ι) as a g(−ι; ι)-weighted sum of φk−1
t (−ι). In some cases, one may

want to use weighting functions other than g(−ι; ι). Similar to the above analysis, we can

pin down the correlation between the higher-order statistics by examining the monotonicity

of associated statistical transformations and the weighting function.
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4.3 Arbitrary Aggregation

In the elementary model, any relationship that holds at the disaggregated level is maintained

with aggregation. Because we can always view a set of buyers (denote the set by I) as one

buyer with
∑

j∈I bj purchases and a set of sellers (denote the set by I ′) as one seller whose

size given by
∑

i∈I′ si. This yields our next proposition:

PROPOSITION 5. Relationships that hold at a disaggregated level are preserved under

aggregation in the elementary model.

Consider for example the firm-level statistics at the intensive margin. As buyers are in-

dependent, the total number of purchases that fall into seller i also follows a binomial

distribution:

P[xi = x] := P[
∑
j

xij = x] = Cx∑
j bj
sxi (1− si)

∑
j bj−x. (8)

The sum of independent binomial random variables is itself a binomial random variable if

they share the same success probability. Therefore the probability of x purchases falling

into i is identical to P[xiJ = x], where the representative buyer J has
∑

j bj purchases.

The ordering of sales at the bilateral level preserves at the firm level; firms with higher si

on average not only sell more to each buyer but also have greater total sales. Similarly,

countries with higher sales also sell to more destinations and sell more to each destination.

4.4 General Variables of Interest

The elementary model essentially generates only one outcome: the realization of purchase

assignment {xij}N×M. Therefore, all statistical relationships that the model can directly

match are necessary functions of {xij}N×M. However, we are sometimes interested in

characterizing the network based on other firm features, such as productivity or R&D

intensity. If, in the data, a more productive buyer matches, on average, with less productive

sellers, we want to know whether this empirical regularity informs us about the underlying

matching mechanism.

We formalize the question as follows: let the buyer-seller assignment follow the elemen-

tary model, and consider a firm-specific variable of interest, ψ. Under which data generating

process can {ψι} be FSD ordered in ι, so that the results of the previous subsections could

be applied immediately?
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Clearly, if (1) ψ is a monotone deterministic function of ι or (2) ψ is FSD generated

in ι, that {ψι} can be FSD ordered in ι is trivially true. Moreover, if (3) ψ is a mono-

tone deterministic function of the realizations of t, where t can be any transformation of

{xij}N×M that has an FSD order or (4) ψ is FSD generated based on such a t, {ψι} is

also FSD ordered in ι (either in ascending or descending order). The proof is trivial using

the ranking theorem and the stochastic dominance theorem.

Take productivity as an example. One example of case (1) are models where firm size

is an increasing function of productivity. Case (2) includes models where the productivity

distributions of small and large firms are allowed to overlap, but larger firms have a greater

probability of being more productive. If we consider an environment where firms’ produc-

tivity is a function of their realized sourcing outcomes xbj = (xb1j , ..., x
b
nj) and productivity

is a non-decreasing transformation of xbj , it belongs to case (3). Finally, if a firm’s pro-

ductivity is not a deterministic function of its realized sourcing outcomes but a stochastic

one following an FSD ordering, it corresponds to case (4). The settings of Melitz (2003),

Bernard et al. (2003), and Antras et al. (2017) can be viewed as examples of (1), (2), and

(3), respectively.

If productivity falls into one of the above four data generating processes, the elementary

model predicts, for example, that more productive buyers will match with less productive

sellers on average. Consequently, we will not be able to draw any conclusions about how firm

matching behaviors differ depending on productivity. To summarize, if a general variable of

interest is stochastically monotone in fundamental model parameters or in realized variables

that follow a FSD ordering, it provides no additional information about firm matching

relative to the elementary model.

5 Linking to Economics

One argument on the limitation of random-allocation models, such as the one proposed by

Armenter and Koren (2014), is that they are statistical models lacking economics. Section

5.1 shows that the elementary model can be derived from a competitive environment, where

models with an EK structure are a special case. This finding in turn greatly improves our

ability to map the elementary model to data for economic analysis, which we demonstrate

with examples in Section 5.2.
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5.1 Elementary Model from a Competitive Environment

Consider an environment where buyers choose the seller that provides the highest utility

for each of their purchases. Buyer preferences over seller i’s product are drawn from a dis-

tribution Hi and denoted by ψi. The distributions H1, ...,HN are independent, admissible,

and FSD ordered. We can view H as a function of some model primitives, such as various

product characteristics, including price.

Intuitively, Hi � Hi′ implies that i always has a higher probability of receiving better

utility draws; hence, its probability of being chosen is always higher in the competitive

equilibrium. Given the setting, the probability that a purchase goes to seller i is given by:

si = P[ψi > max(ψ−(i))],

where ψ−(i) is the vector of N − 1 random variables excluding ψi. For simplicity, let us

focus on the case in which Hi is continuous and differentiable for all i. Consider two sellers,

Hi � Hi′ , then we have

si := P[ψi > max(ψ−(i))] = P[ψi > max(ψ−(i,i′))]P[ψi > ψi′ ].

Note that max(ψ−(i,i′)) is also a random variable. Let J−(i,i′) denote its cumulative distri-

bution. Thus,

si
si′

=
P[ψi > max(ψ−(i,i′))]P[ψi > ψi′ ]

P[ψi′ > max(ψ−(i,i′))]P[ψi′ > ψi]

=

∫∞
−∞ J−(i,i′)(z)dHi(z)∫∞
−∞ J−(i,i′)(z)dHi′(z)

∫∞
−∞Hi′(z)dHi(z)∫∞
−∞Hi(z)dHi′(z)

>

∫∞
−∞ J−(i,i′)(z)dHi(z)∫∞
−∞ J−(i,i′)(z)dHi′(z)

∫∞
−∞Hi(z)dHi(z)∫∞
−∞Hi(z)dHi′(z)

,

where the inequality is ensured by Hi(z) < Hi′(z). In addition, by Hi � Hi′ and both

J−(i,i′)(z) and Hi(z) being increasing in z, the ranking theorem implies that both fractions

on the right hand side (RHS) of the above expression are larger than 1. Therefore, si > si′ .

Note that the competitive-selection environment described above is the same as in EK.

The Fréchet distribution is just one of many distributions that satisfy the FSD-ordering

property: if one Fréchet distribution has the same shape parameter but a greater level
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parameter than another Fréchet, the former FSD the latter. When assuming thatHi follows

the Fréchet distribution, the probability of a seller i matching a buyer j for a transaction

in our model gives exactly the same expression as the probability that country i provides a

good at the lowest price in country j in the EK model. With additional assumptions on the

utility function and continuity, the model will collapse to EK, with sellers being isomorphic

to exporting countries in the EK model.17

The above analysis shows that the elementary model can be derived from a competitive

environment, where models with an EK structure are a special case. This finding in turn

greatly improves our ability to map the elementary model to data for economic analysis,

which we demonstrate with examples in Section 5.2.18

5.2 Linking the Model to Data: Design Matters

As random-allocation can be viewed as an economic instead of a purely statistical pro-

cess, this in turn disciplines how we should link the model to data when analyzing certain

economic problems. To illustrate this point we provide two examples with existing balls-

and-bins designs: the examination of negative degree assortativity in Bernard et al. (2018a)

and the analysis of the fraction of exporting firms by Armenter and Koren (2014).

In their paper on two-sided heterogeneity and exporter-importer matching, Bernard et

al. (2018a) ask if the negative degree assortativity among Norwegian exporters and Swedish

importers can be captured by a simple balls-and-bins model. They conclude that a balls-

and-bins model does not produce negative assortativity and use that result to argue in

favor of a model with match-specific fixed costs. However, we find negative assortativity in

the Norwegian trade data by treating each transaction as a ball and assigning these balls

randomly according to the elementary model, as shown in Figure 1.19

17If one foregoes continuity but adds additional assumptions such as Bertrand competition, the model
arrives at Eaton et al. (2013) (EKS). Although not the focus of this paper, it is clear from these two
examples (EK and EKS) that the elementary model matches buyer-seller data neither necessary nor sufficient
to guarantee novel implications for aggregate welfare or productivity. Whether Hulten’s theorem holds
exactly, or whether the sufficient statistic on the gains from trade change, depends on other assumptions
and modelling elements researchers bring to aggregate their model.

18The above analysis also implies that it is possible to reformulate or rewrite richer theories of production
networks as an extension or variation of the elementary model. For example, theories featuring suppliers’
selection by buyers (Panigrahi, 2022; Miyauchi, 2021), endogenous search intensity (Chaney, 2014; Arkolakis
et al., 2021; Demir et al., 2021; Huang et al., 2021), and relation-specific fixed cost (Bernard et al., 2018a;
Lim, 2020; Huneeus, 2019; Zou, 2020; Dhyne et al., 2021). Thanks to Yuhei Miyauchi for bringing this to
our attention.

19The Norwegian trade data is described in Appendix B.1. Bernard et al. (2018a) had access to import-
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Notes: This figure shows on the x-axis all possible values of the number of suppliers per firm and on the
y-axis the average number of customer connections of these suppliers, using the simulated buyer-seller
network based on Norwegian customs data from 2005. In particular, the total number of transactions
of each buyer and seller is taken as given, but these transactions are randomly redistributed between
buyers and sellers according to the elementary model. The units of the axes are in logarithmic. The fitted
regression lines and 95% confidence intervals are indicated by the solid line and the gray area.

Figure 1: Degree assortativity with the correct falsification design: Norwegian data

The source of difference lies in their exercise design. Bernard et al. (2018a) consider

N ×M bins, with N being the number of exporters from Norway andM being the number

of importers from Sweden. Each bin size is set as the product of the relative degree of the

buyer and seller: n̂si =
nsi∑
i n
s
i
, n̂bj =

nbj∑
j n

b
j

, and si = n̂si × n̂bj . The total number of balls from

Sweden is set as the total number of existing connections: n =:
∑

i n
s
i =

∑
j n

b
j . The balls

are then assumed to be assigned to bins at random, with the probability of any ball landing

on a bin i being si.

There is an immediate problem with this setup. If a ball is a connection, once a ball

has landed in a bin (an importer-exporter pair) that bin should be closed. Instead they

allow bins to catch more than one ball. As a result, the model-simulated expected number of

connections does not, by construction, match the sample mean, which renders inconsistency

in the model design in the first place.20 This example emphasizes the importance of a

correctly designed balls-and-bins model in assessing empirical regularities of the data.

Armenter and Koren (2014) is the first and most well-known example of a balls and

bins model in international trade. The paper examined, among other things, how well such

exporter trade data aggregated to the annual level rather than the underlying transaction data. We use
the transaction-level sales by Norwegian exporting firms to foreign importing firms. Sweden is the largest
destination for Norwegian exports.

20To see this more clearly, if we plug the balls and bins’ sizes into the statistical function for the extensive

margin, it is immediate that the design implicitly requires that E(nsi ) = E(pij) = E(
∑
i((1− (1− ns

in
b
j

n2 )n)),
which does not hold in general.
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a model captures the fraction of US firms that export. Each US manufacturing firm was

modeled as a seller throwing balls (i.e., sales) into two bins (i.e., buyers), one domestic

and one international. The number of balls of each firm was set to equal its total sales

divided by the average US export shipment size, which is $36,000. The relative size of the

two bins is set to equal their proportionate share of US manufacturer purchases. Armenter

and Koren (2014) simulated 297,873 US firms with a size distribution approximated by a

log-normal distribution with σ = 2.66 and µ = 13.2. Given this setup, they find that 74%

of US manufacturing firms export, in sharp contrast to the 18% in the US data.

Starting from the elementary model, we reexamine the question of how many US manu-

facturing firms export. We assume the same distribution of US firm sizes as Armenter and

Koren (2014) and maintain their assumption that US firms throw balls at domestic and

foreign customers.21 However, we consider several adjustments to their setup. In addition

to two aggregate buyers bins (domestic and foreign), we consider simulations with country-

level bins and with firm-level bins. With country-level bins, each bin is proportional to the

share of country purchases from the US. For the firm-level bins, each bin size should ideally

be each firm’s share of US purchases. We impute this information by assuming that the

relative firm size distribution in the buying countries follows the size distribution of Chi-

nese importing firms.22 Linking to economics, the elementary model with balls representing

transactions and bins as foreign firms is our preferred design, as the positive transactions

between firms are recorded in customs data and are the basis of trade statistics.

There are two additional important choices to be made in designing the balls and bins

framework. The first is the ball size and second is the presence and level of any cutoff which

limits what transactions are recorded in the data. Armenter and Koren (2014) assumed

that each ball represented $36000 of sales, the average transaction size in the US export

data, and imposed no cutoff. The US data have a minimum transaction size of $2000,

i.e. a cutoff below which export transactions are not systematically recorded. We consider

balls of three sizes: $36000, $2000, and $100, where $100 is the minimum international

21Simulation exercises assuming importers throw balls are reported in Appendix Table A1. The results
change very little.

22In the case of China, we take the actual distribution from Chinese customs data for the same year. Then
each Chinese firm’s bin size is schina*import share of that firm, yielding nchina bins whose distribution is A.
For other countries, we assume their importer bin distribution is the same as that of China. For example, if
country j’s total manufacturing imports from US are twice as large as China’s, we randomly draw 2*nchina
bins from A so that the sum over all foreign firms and countries equals the share of US manufacturing that
is exported. Armenter and Koren (2014) did not have access to data on foreign firm (buyer) sizes or shares.
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Table 1: Share of Manufacturing Exporters in the US: balls and bins Simulations

US Firms as Ball Holders

US Customs Reporting Cutoff
2000 USD (DATA) 36000 USD (AK)

Bins are Firms Countries RoW as one bin Firms Countries RoW as one bin

(1) (2) (3) (4) (5) (6)

Ball Size = 100USD 11.02 % 79.22 % 90.72 % 0.41 % 38.51 % 59.84 %
Ball Size = Cutoff Size 92.34 % 92.05 % 92.85 % 65.38 % 64.32 % 66.95 % (AK)

Notes: Each number in this table is the share of direct exporters among US manufacturing firms calculated from a separate
balls and bins simulation of a random allocation model. Bin size (buyer), ball size (transaction) and the import reporting
cutoff vary across the cells.

transaction size observed in Norwegian customs data. We prefer $100-sized balls with an

export recording cutoff of $2,000, as this matches the empirical context. We recognize

that the “true” minimum export transaction size is likely larger than $100, but use this to

demonstrate the importance of hidden assumptions in comparing the model to data.

The results of this exercise are intuitive and important for the design of balls-and-bins

models for particular data applications. As reported in Table 1, in our preferred design, the

model predicts 11% of US manufacturing firms export, which is much closer to the 18% in the

data. With aggregate or country-level bins, the model performs poorly in matching the US

exporter share regardless of ball size and the presence of a cutoff. This implies that in order

to match the low fraction of US exporters, there must be firm heterogeneity in both buyers

and sellers. This, of course, is at the heart of the recent literature on production networks.

The recording cutoff also matters in this particular case, e.g. a $10,000 transaction is not

the same as a collection of 100 $100 transactions. Not knowing the true distribution of

transactions can once again cause the model to overestimate the share of exporting firms.

These two examples highlight the importance of careful model design and the relevance

of assumptions when taking a balls-and-bins model to the data, and the benefits of the

results presented in Section 5.1.

6 Data Response to Shocks

The elementary model, in addition to matching cross-sectional stylized facts in production

and trade networks, can guide our understanding of a diverse set of network responses to

shocks. In other words, empirical regularities, not only in levels but also in changes, may

not improve our understanding of firm interactions beyond random matching. We present
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two examples, one examining the reshuffling of importer-exporter links following the arrival

of new suppliers, and the other looking at firm-level responses to exchange rate shocks.

6.1 Bipartite Outcomes

The elementary model is well-designed to understand the pattern of partner switching in

response to shocks. Consider Sugita et al. (forthcoming), who combine several existing

network-formation mechanisms to explain how US textile and apparel buyers match with

Mexican exporters after the end of the Multi-Fibre Arrangement (MFA) and the ensuing

arrival of new Chinese exporters.

Sugita et al. (forthcoming) cite five empirical findings that motivate and support their

model of firm-to-firm matching. When MFA quotas are removed from their products, (1) US

importers upgrade their Mexican partners more often and (2) Mexican exporters downgrade

their US partners more often; (3) Among firms that switch their main partners, the new

partners’ ranks positively correlate with the ranks of the old partners; (4) The capability

cutoff for Mexican exporters increases more if the products had quotas removed; (5) U.S.

importers and Mexican exporters decrease the number of partners in each other’s countries.

However, all of these five findings can be generated from the elementary model. First,

(3) is trivially true in a random matching world. As links are formed randomly, new partners

should follow the same distribution as the old partners – in fact they should even have the

same mean ranks in the absence of shocks. Next, we consider the same shock as the authors

do: the end of the MFA put competitive pressure on Mexican firms as it led to an increased

entry of Chinese sellers to the US economy. Through the lens of the elementary model, this

implies that the normalized size of Mexican sellers decreases from si to si
δ , where δ > 1.

The finding (5) is immediate: reduced bins size means fewer matches between US buyers

and Mexican sellers.

Sugita et al. (forthcoming) ranked firms based on their product-level trade values prior

to the liberalization; hence, their firm rank is directly comparable to our s and b. The

partner rank is computed as the rank of the firm’s largest partner. Correspondingly, let j̄i

denote the highest-ranked buyer that seller i matches with in the elementary model. Recall

that when si > si′ , the largest buyer that seller i matches with FSD the largest buyer with

which i′ matches. Let si′ = si
δ ; we immediately have that EpreMPA(j̄i) > EpostMPA(j̄i):

exporters in Mexico experience partner downgrading.
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Similarly, denote īj as the size of the highest-ranked seller with which buyer j matches.

Applying the inclusion-exclusion principle, the probability that īj ≤ z conditional on the

buyer purchasing from Mexico is

P[̄ij ≤ z; δ] =
(
∑
i≤z si
δ + (1− 1

δ ))bj − (1− 1
δ )bj

1− (1− 1
δ )bj

,

where the denominator on the RHS is the unconditional probability of at least one purchase

from j landing in Mexico; the numerator is the unconditional probability that balls, if any,

land in Mexican bins ranked lower than z netting out the probability that no purchases land

in Mexico. Given bj > 1 and δ ≥ 1, P[̄ij ≤ z; δ] is an increasing function in δ. Therefore,

the distribution of īj | δ = 1 FSD the distribution of īj | δ > 1. Then, by the ranking

theorem, EpreMPA(̄ij) > EpostMPA(̄ij): importers in the US experience partner upgrading.

Finally, we consider (4). Denote ij the lowest-ranked seller that buyer j matches with:

P[ij ≤ z; δ] =
1− (

∑
i>z si
δ + (1− 1

δ ))bj

1− (1− 1
δ )bj

.

Given bj > 1 and δ ≥ 1, P[ij ≤ z; δ] is a decreasing function in δ. Therefore, the distribution

of ij when δ > 1 FSD is the distribution of ij when δ = 1. By the ranking theorem, this

implies that EpreMPA(ij) < EpostMPA(ij). Recall that by proposition 5, we can view the

US as one buyer. Therefore, the rank cutoff for Mexican exporters increases.

In conclusion, although the empirical findings in Sugita et al. (forthcoming) are robust

and intriguing, they can be explained by a much simpler model and therefore may not be

helpful in establishing the matching mechanism proposed by the authors.

Because different studies look at different shocks and variables of interest, we cannot

provide a general solution recipe. Nevertheless, empirical regularities in changes and levels

are both about comparative statics. Therefore, the general results derived in Section 4 can

help pin down the elementary model’s predictions on firm-to-firm or aggregate responses to

policy changes or economic shocks.

6.2 Aggregate Outcomes

The elementary model can also be used understand shock responses at a more aggregate

level. For example, researchers are frequently interested in the heterogeneous response of
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firms to a common shock in terms of their sales, entry and exit, or pricing. A relatively

standard empirical specification that examines the heterogeneous response of firms is:

ln(yict) = αpln(ηct) + βpln(ait−1) + γpln(ait−1) ∗ ln(ηct) + dt + dic + εijt,

where ait−1 is a firm-specific characteristic at time t − 1 and ηct is a destination-specific

shock at time t. We are interested in the estimated αp and γp. Without loss of generality,

the demeaned ait−1, αp, can be interpreted as the average impact of the shock on yict.

Consider, for example, firms’ export-volume response to an exchange rate depreciation

as in Berman et al. (2012). A fall in the exchange rate is equivalent to all buyers in

destination market c increasing the number of purchases from bj to δbj , where δ > 1. Let

ai be a variable of interest that is positively correlated with si.

The elementary model implies that firm i’s export quantity to country c, xic, follows

a binomial distribution Bin(bc, si) with bc =
∑

j∈c bj . As Bin(δbc, si) � Bin(bc, si), it is

immediate that

αp = E(ln(xic) | δbc)− E(ln(xic) | bc) > 0.

Next, we examine the heterogeneous response. Ignoring the untreated countries for now

and using the Delta method, one can show that

∂2E(log(xij))

∂bj∂si
≈
−2b2jsi − 2b2j (1− si)

(2b2jsi)
2

=
−1

2b2js
2
i

< 0.

Hence, γp < 0, consistent with Berman et al. (2012)’s first finding that the elasticity of

the firm’s export volume to an exchange rate change decreases with the performance of the

firm. Appendix A.6 provides the formal proof as well as the proof of the similar prediction

at the extensive margin.

If suppliers tend to charge larger buyers lower prices, as documented by Morlacco (2020)

and Rubens (2020), the elementary model also predicts that the elasticity of the exporter

price to the exchange rate change increases with the performance of the firm, consistent

with the second finding of Berman et al. (2012).23 In this example, the firm-level responses

are not informative of any heterogeneous pricing-to-market behaviors. Those responses can

simply be caused by buyer and seller heterogeneity, coupled with a shock-induced random

23We treat export price as total export value divided by total export volume, just as how it was measured
in Berman et al. (2012).
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reshuffling of buyer-seller links. Precisely as Berman et al. (2012) suggested, their findings

are consistent with any model in which demand elasticity decreases with firm performance.

This example highlights the usefulness of the elementary model in understanding firm-

level responses to shocks and policy changes. As with link reshuffling in the network,

heterogeneity in levels at the firm-to-firm level can lead to heterogeneous responses (het-

erogeneity in changes) for more aggregate outcomes. The elementary model can thus help

identify which features of the data are useful in guiding more elaborate model development

and which can be explained by the simple random matching model.

7 “Instructive” Statistics and Theory Selection

Despite the fact that our findings so far suggest that many existing empirical regularities

may not be sufficiently informative to guide the associated model construction, it simul-

taneously implies that the elementary model can be a powerful tool for selecting truly in-

formative statistics and benchmarking more elaborated theories. We illustrate these ideas

with examples in this section.

7.1 Use the Elementary Model to Discern Statistics

Intuitively, given that the simple elementary model matches a rich set of statistical relation-

ships on production networks, any stylized facts or empirical regularities that necessitate

the development of a more complex model must be those that the elementary model fails

to match. From the reduced-form perspective, we sketch two ideas on how to use the el-

ementary model to develop “instructive” statistics and hence guide more elaborate model

construction. To be precise, “instructive” statistics are those that provide guidance on

model structure and parameters values beyond those obtained in the elementary model.

First, we can design statistics that are by themselves “instructive” in that they do not

match those from the elementary model. Then, these statistics can be used directly to

inform the nonrandom matching process. Second, related to a suggestion of Armenter and

Koren (2014), although the signs of some statistical relationships may not be informative,

their magnitudes compared with the predictions from the elementary model can be useful

in guiding model construction and model parameters. Obviously, each approach has advan-

tages and downsides. The first approach is conceptually more demanding but it does not
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require us to compute any statistics using counterfactual data – a great advantage especially

when transaction data is not available. The second idea is easy to implement, but can be

sensitive to data features. Below are three examples.

7.1.1 “Instructive Statistic” - Seller market shares

One statistic where the data and the elementary model produce opposite signs is the rela-

tionship between the number of customers and the average market share of a seller in those

customers. Bernard et al. (2022) show that, in the Belgian domestic production network,

large firms with many customers have smaller shares of their customers’ purchases than

do smaller firms with fewer customers, i.e. firm outdegree and average market share are

negatively correlated.

To determine the relationship in the elementary model, we start by noting that the

expected number of customers a seller matches with is given by N s
i . By the law of iterated

expectations, the expected average market share of seller i equals:

M̄ b(i) =

∑
jM

b
ijpij∑

j pij
= si, (9)

where M b
ij denotes the expected market share of seller i in buyer j’s total purchases. The

intuition is simple. The probability that a purchase goes to seller i is si. Therefore, regard-

less of a buyers’ size, its expected share of purchases from i is always si, hence so does the

average share of purchases. We proved before that N s
i is an increasing function of si; hence

we establish the positive relationship between M̄ b(i) and N s
i in the elementary model. This

moment of the data can give guidance to the construction of a more elaborate model, such

as Bernard et al. (2022).

7.1.2 “Instructive Statistic” - Correlated Matches

A second instructive statistic comes from considering intertemporal versions of the elemen-

tary model. In the baseline design, the assignments are independent events; therefore, a

seller matching with a buyer at time t will not increase their matching probability at time

t+ 1. In the spirit of Chaney (2014), consider the following simple probit regression:

P[xij,t+1|bj , si] = α1[xij,t > 0] + Ψ(bj,t+1, si,t+1) + εij,t+1,
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(a) (b) (c)

Notes: This figure presents binned scatter plots where we divide Norwegian exporters and international
importers into 10×10 equally sized bins by log sales and log purchases and calculate the share of connected
pairs (pij) in each bin pair. Panels (a) and (b) show the marginal distribution of pij for the top 10% and
the bottom 10% of sellers and buyers, respectively. Panel (c) is a surface plot of pij across 10× 10 bins.

Figure 2: Matching probability: Norwegian trade data

where 1[xij,t > 0] is the matching result of buyer j and seller i at time t. In the baseline

random-matching model, the matching probability is a function of buyer and seller size,

which should be fully captured by Ψ(bj,t+1, si,t+1).

To test this, we use transaction-level Norwegian customs data from 2005-2010. One

unique feature of data is that both buyers and sellers are identified, see Bernard et al.

(2018a) for details. Without loss of generality, we only consider sellers from Norway and

buyers from China. The variables bj,t+1 and si,t+1 are proxied by the yearly logged buyer

purchases and logged seller sales, respectively.24 We proxy for Ψ(bj,t+1, si,t+1) with their

third-order polynomials with full interactions. The estimated α̂ is 2.844 and is statistically

significant at the 1% level, suggesting that the formation of the production network is indeed

path dependent. The persistence of buyer-seller matches can be an important feature in

explaining the structure of production networks, as pointed out by Chaney (2014).25

7.1.3 Informative Magnitudes - Bipartite Network Revisited

Even when the signs of some statistical relationships are not informative, their magnitudes

compared with the predictions from the elementary model can be useful. We illustrate this

24We obtain quantitatively similar results when controlling for the number of transactions instead of sales.
25Whether the persistence of buyer-seller matches is an important feature to be included in a production

network model depends on the research question. While it is surely an important feature to consider
when studying network formation dynamics, section A.3 demonstrates that when the assignments are path
dependent, all static bipartite relationships predicted by the elementary model remain robust. Generally
speaking, adding the time dimension into the model is equivalent to adding another variable of interest, hence
the results regarding general variables of interest in Section 4.4 directly apply. A bipartite relationship that
can be explained by the elementary model or its extensions precisely points to the underidentification of
models that are designed to explain those stylized facts.
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(a) (b) (c)

Notes: This figure presents binned scatter plots exactly as in Figure 2 but using the simulated data
following the elementary model as in Figure 1.

Figure 3: Matching probability: random-matching simulation

point by examining the matching probability between Norwegian sellers and their interna-

tional buyers in year 2005. In Figure 2, we group sellers (buyers) into 10 equal-sized bins

by log sales (purchases) and present the fraction of buyers and sellers that are matched in

real data across bins. With a slight abuse of language but no risk of confusion, we refer

to the fraction of matched pairs as the matching probability pij . Panels (a) and (b) are

the marginal distribution of pij for the top and bottom 10 percent of sellers and buyers,

respectively. Panel (c) presents the surface plot of pij across 10× 10 bins (y-axis in logs).

In Figure 3, we present the same statistic but use data from the random-matching

simulation. Specifically, we take the transactions of each buyer and the total number of

transactions of each seller as given from the data but randomly reshuffle the transactions.

As shown in Figure 3, overall the elementary model captures the actual matching results

well. However, it slightly underpredicts the probability that the smallest buyers match with

small sellers and overpredicts the probability that large buyers (sellers) match with sellers

(buyers) as shown in Figure 5-a, where we present the prediction errors of the matching

probability of the elementary model against the real data. If one wants to study how firms

match, these prediction gaps are potentially useful in guiding model construction.

7.2 Use the Elementary Model to Select Theory

Related to the idea presented above, we can use the elementary model as a benchmark to se-

lect applied theories. This is a slightly different thought experiment: instead of starting from

data and the elementary model to ask whether any information left in the data demands

a more elaborated theory to explain, we start from a theory and examine its explanatory

power compared to the elementary model. In the simplest case (again, a reduced-form
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perspective), one may conclude a model is more desirable if it matches more data features

than the elementary model. Here we present a more formal treatment. The idea is inti-

mately associated with the concept of Bayesian model selection. This section will explain

why this perspective may be preferable for future production network modeling. Formally

addressing the testing and inference problem is beyond the scope of this paper and left for

future research.

7.2.1 Model Selection

Where there are several competing theoretical models, Bayesian model selection provides

a formal way of evaluating their relative probabilities in light of the data and any prior

information available. The basic idea is simple. The evaluation of a model M ’s performance

in light of the data D is based on the likelihood P(D | M). Applying Bayes’ theorem to

invert the order of conditioning, we obtain the model posterior probability given the data:

P(M | D) ∝ P(M)P(D |M)

where P(M) is the prior probability assigned to the model itself. Thus the posterior prob-

ability is the likelihood under the prior for a specific model choice.

In particular, when comparing two models, M0 versus M1, we can write down the ratio

of the posterior probabilities and decompose it into two parts:

P(M1 | D)

P(M0 | D)
=

P(D |M1)

P(D |M0)︸ ︷︷ ︸
Bayes Factor

× P(M1)

P(M0)︸ ︷︷ ︸
Priors

. (10)

Bayes factor, which we denote by B01, is the ratio of the likelihoods of the models. When

B01 > 1 (< 1), it represents an increase (decrease) of the support in favor of model 1

relative to model 0 given the observed data. Priors captures the belief about the relative

plausibility of the models before the arrival of the data. Specifically, the extent to which

we update beliefs over the two models after observing the data is completely summarized

by the Bayes factor.

In light of the idea of model selection, we can now think more formally about moving

from data to a preferred theory. The extent to which a theory is preferred depends on (1)

its relative ability in explaining the data compared to the the alternative theory, (2) the
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researcher’s priors over the theory and the alternative.

Thinking about model comparisons from a Bayesian perspective has several attractive

features. First, it requires the researcher to think more carefully about “what the model

is trying to explain.” That is, what is D? For example in our context, is a model trying

to explain buyer-seller linkages, or just some of the statistical relationships based on these

linkages? Second, it also allows for the avoidance of overly complex models through penalize

the priors. Finally, it is a more comprehensive concept of model evaluation than the concept

of falsifiability, which states that a model can be rejected if it fails to explain some aspects

of the data (Popper, 1959). In particular, that a model fails to pass certain falsification

tests or to match certain moments in data is not sufficient to lead to rejection. Unless

the observations are totally impossible within a model, finding that the data have a small

probability given a theory does not say anything about the probability of the theory itself

without comparisons to an alternative (Trotta, 2008).

Note that in contrast with the frequentist goodness-of-fit tests, Bayesian model selection

highlights that it is pointless to reject a theory unless an alternative is available and fits the

observed facts better (Loredo, 1990). In other words, the probability of a theory that makes

a correct prediction can increase if the prediction is confirmed by observations, provided

competitor theories do not make the same prediction. This lines up with the intuition that

a verified prediction lends support to the theory that predicts it. In fact, this is very much

in line with how theories in trade are evaluated in reality: for instance Krugman (1980) was

the preferred theory for explaining intra-industry trade, because other contemporaneous

theories fail to explain it.

We next demonstrate how to select a model with examples. To evaluate an applied

model quantitatively requires one to compute the likelihood of the model against that of

the elementary model, which is presented in subsection 7.2.2. To evaluate an applied model

qualitatively, one can plot the simulated matching from it against that from the elementary

model. As an illustrative example for the latter, we compare a Beckerian model featuring

positive assortative matching in the spirit of Sugita et al. (forthcoming) with the elementary

model in explaining firm-to-firm connections. Using the 2005 transaction-level Norwegian

customs data with matched Norwegian exporters and international importers, we take each

buyer and seller’s transactions as given. For the elementary model, we match buyers and

sellers by random reshuffling these transactions. For the Beckerian model, we simulate the
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Notes: This figure presents binned scatter plots exactly as in Figure 2, but using simulated data
that link buyers and sellers following a Beckerian matching rule. The data generating process is
described in the text.

Figure 4: Matching probability: assortative matching simulation

links following the matching mechanism: we take the total number of connections of each

buyer and seller as given from the data. Starting from the largest buyer, we assign its

largest connection (in terms of total sales) to the most-connected seller, its second-largest

connection to the second-most-connected seller, and so forth. After completing assigning

the links of the largest buyer, we move to the second-largest buyer and repeat the process.

In every round, we assign the buyer to the most connected seller that still has slots.26

The matching probability generated from Beckerian matching is presented in Figure 4. It

captures the fact that large sellers have a higher probability of matching with larger buyers.

However, it predicts that for small sellers (buyers), their matching probability decreases in

buyer (seller) size (4-a, b), in contrast to the data. Comparing the prediction errors of the

matching probability of the elementary model vs. the Beckerian model (Figure 5), we find

that the latter has a much higher prediction error for most of the buyer-seller bins. Through

the lens of Bayes, this suggests that the data lends less credibility to the Beckerian model in

explaining firm-to-firm connections compared to the elementary model. In other words, if

we conclude that the Beckerian model is our preferred theory, the justification must comes

from a strong prior we attached to it.

At first look, this may appear perplexing, as the Beckerian matching model is intended

to explain matching, whereas the elementary model does not. However, despite the fact

26In Sugita et al. (forthcoming), matching occurs between the final producer and the supplier. A final
manufacturer produces multiple varieties and a supplier has multiple production lines. A variety can be
matched with only one production line and vice versa. The matching (in their preferred case C) is char-
acterized by positive assortativity, i.e. more capable producers match with more capable suppliers. The
production technology is Leontief, so in equilibrium, more productive matches translate into higher final
sales, and more trade between buyers and sellers. Given this, we feel the allocation described above best
matches their model. We recognize that there may be different interpretations and designs that do not
change the central message of the exercise.
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(a) Balls-and-bins simulation (b) Assortative matching simulation
Notes: This figure presents the difference of the predicted matching probability of the elementary model (panel a) and
the Beckerian matching model (panel b) with the actual matching probability from the Norwegian trade data in each
of the 10 × 10 buyer-seller bins, i.e. p̂ij − pij . If the value is greater (less) than 0 it implies the model over-predicts
(under-predicts) the matching probability for the given buyer-seller group.

Figure 5: Prediction errors of matching probability

that the Beckerian matching model was designed to explain firm-firm linkages, whose data

counterpart is pij , in practice it only matches only certain statistics of pij , such as the

sign of assortativity. To match these statistics, strong assumptions are imposed, which

in turn generate greater prediction errors in matching the distribution of pij . Without

comparing a model to alternatives, we may make incorrect conclusions about its plausibility,

leading to mistaken conclusions on mechanisms, causal interpretations, and welfare or policy

predictions.

7.2.2 Network Models: A Quantitative Comparison

In this subsection, we apply the idea of model selection to compare several candidate network

models quantitatively. From the Bayesian view, discovering that the data has a high or low

probability given a theory says nothing about the probability of the theory itself unless we

can compare it to an alternative. Therefore, the choice of an appropriate alternative model

is paramount. The elementary model is an appealing candidate because of its simplicity

and because it can easily be extended and mapped into existing economic models. In this

section, we further show that the elementary model is also so far the best alternative from a

data perspective, and thus a reasonable benchmark model for work on production networks.

We consider three class of network models besides the elementary model: (1) the

Erdös–Rényi model (ER), where every pair of buyer-sellers is independently linked with

probability p; (2) the Fixed-degree Random Graph model (FRG), where links are randomly
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Table 2: Production Network Model Selection

Erdös-Rényi
Fixed-degree Elementary Model Beckerian

Random Graph Baseline b̂ = β̂b+ α̂ Trans. uncertainty Baseline Optimal Error

(1) (2) (3) (4) (5) (6) (7)

-9.99 -17.82 -8.22 -7.73 [-9.00, -8.18] -73.47 -18.58
p̂ = 1.25e−4 α̂ = 0.57 α̂ = −0.21, 1.51 ε̂ = 2.48e−4

β̂ = 0.33 β̂ = 1.45, 1.35e−05

Notes: The maximized log-likelihood (per link) is presented in bold in the first row for each given model. The remaining
rows are the parameter values that maximize the log-likelihood of a given model conditional on the observed Norwegian
network.

allocated conditional on taking each buyer and seller’ degree as given;27 (3) the Beckerian

model. The first two models have been widely used in the broader network literature either

as the foundation of more elaborate network models or as a baseline for falsification. Of

course one can propose more complicated models, but our focus is on selecting a benchmark.

Each of the aforementioned models can be specified by a set of parameters.28 For a fixed

set of parameters, the model induces a probability distribution of the production network.

If we hold a uniform prior, i.e., before the arrival of the data, we believe each model is

equally probable, then selecting the best posterior model is equivalent to ask which model

gives the largest likelihood to the observed data. In the interest of space, we discuss each

model and its associated likelihood function in Appendix B.3.

The estimated results are presented in Table 2. The first row of shows the maximized

log-likelihood of a given model, which we normalize by the total number of links observed in

the data. Its value reflects the likelihood of observing the sample network if the associated

model is the true model. The rest of the rows report any estimated parameter values. The

elementary model yields the highest likelihood value, the baseline case (column 3) is about 6

times as large as the likelihood value of the Erdös–Rényi model (column 1). When we allow

27For example, the Power-law Random Graph model proposed by Aiello et al. (2001) is one special case
of the Fixed-degree Random Graph model, in which the degree distribution of firms (nodes in the network)
is drawn from a Power-law distribution.

28When there are parameter uncertainties and under a uniform prior, the posterior probability P(M | D)
is proportional to P(D | M, θMML)P(θMML | M) , where θMML is the vector of parameters that maximize the
likelihood given the model class M . The Bayesian evidence P(D | M) is dependent not only on the best-fit
likelihood but also on our prior beliefs about how likely θMML is given the model class M . Typically, a model
with many free parameters is penalized by having a smaller P(θMML | M) than a simpler model. In other
words, Bayesian inference naturally embodies Occam’s Razor. We avoid a more detailed discussion in the
main text for two reasons: first, P(θMML |M) only depends on priors, and second, the candidate models have
no more than two free parameters, making over-fitting less of an issue. Furthermore, the preferred model
has no free parameters at the end. Nevertheless whenever we report and discuss P(D |M, θMML), we bear in
mind its differences from P(D |M).
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for optimal prediction errors in column (4), the likelihood value of the elementary model

only improves marginally, suggesting that the baseline is a reasonable good description of

the data. Column (5) shows that even when transaction-level data are unobservable, the

elementary model with a simple assumption on ball size still gives a better fit than the

other models. Somewhat surprisingly, Erdös–Rényi model ranks the second in fitting data

despite its simple structure. FRG model ranked third, followed by the Beckerian model. The

fact that the elementary model outperforms the Erdös–Rényi model and the FRG model

emphasizes the importance of the stochastic nature of production networks. As expected,

the naive prediction of the Beckerian model fits the data poorly, as shown in column (6)

of Table 2. While introducing prediction errors in column (7) greatly improves the model

fit, it still has the least explanatory power among all the models. Overall, based on the

log-likelihood values presented in Table 2, the elementary model is the logical choice as a

baseline model for future comparisons.

8 Conclusion

Firm heterogeneity and the sparse nature of the production network implicitly discipline

the structure of the network, even when links are formed randomly. In this case, a large

group of statistical relationships, in both levels and changes, may not be informative in

improving our understanding of production networks beyond random matching.

We provide a benchmark elementary model to distinguish which statistics are sufficiently

characterized by random matching and which require additional model assumptions. In ad-

dition to revisiting the set of stylized facts and empirical results commonly presented in the

trade literature, we develop the general properties of the model, characterizing families of

statistics and data generating processes that may cause a model to suffer from underidenti-

fication concerns. We propose ways to use the elementary model to discern useful statistics

and select applied models. We also provide an economic interpretation of the model by

showing that it naturally emerges from a competitive environment. This view not only

disciplines falsification designs but also helps select appropriate data counterparts given the

economic context of a study. These results can be helpful for various research fields, in

particular for future applied work on firms using large micro-level data sets.

The results of this paper point to several interesting directions for future research. The
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fact that the elementary model provides a good fit to buyer-seller matches suggests that it

may be possible to reasonably identify production network structure without the network

data. Related, the elementary model may also be useful in partialing out the non-random

network exposure and correcting for omitted variable bias in empirical estimations. From

a structure perspective, how to do testing and inference properly for model comparison,

and how to compute counterfactuals taking into account data granularity and modeling

uncertainty can be important areas for future research. Finally, although the focus here

is on production networks, we believe the findings of this paper can be useful for other

areas, as bipartite relationships are at the foundation of many economic problems and the

prior-selection problem potentially exists whenever theory is linked to data.
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Online Appendix for “Sparse Production Networks” (Not for

Publication)

Appendix A Theory Appendix

A.1 Coupling and Stochastic Dominance Theorem

Because this is the first time that the coupling technique has been employed in the network

and trade literature, we provide a pedagogical introduction of the method and its relation

with the stochastic dominance theorem with examples for interested readers.

Coupling is an essential probabilistic technique with a wide range of applications in

statistics. The idea behind the coupling method is that to compare two random variables

X and Y , it is sometimes useful to construct their joint probabilities. Formally, let X

and Y take values in (S, S), where S is a measurable space. A coupling of X and Y is

a probability measure Z := (X ′, Y ′) on the product space (S × S, S × S), such that the

marginal distributions of Z equal to the distributions of X and Y .

There are multiple ways to couple random variables. Consider two Bernoulli random

variables X1 and Y1 as an example. Let P[X1 = 1] = q and P[Y1 = 1] = p, and p is greater

than q. Here, S = {0, 1}. The followings, for example, are two couplings of X1 and Y1:

– (Independent coupling) One obvious way of construct coupling is to let X ′1 and Y ′1 be

independent. In this case, the joint distribution is given by:

P[(X ′1, Y
′

1) = (i, j)]i,j∈{0,1} =

(1− q)(1− p) (1− q)p

q(1− p) qp


– (Monotone coupling) Another possibility is to set X ′′1 = X1, and Y ′′1 = 1 whenever

X ′′1 = 1. When X ′′1 = 0, set a probability (1−p)/(1−q) that Y ′′1 = 0 and a probability

(p− q)/(1− q) that Y ′′1 = 1. In this case, the joint distribution is given by:

P[(X ′′1 , Y
′′

1 ) = (i, j)]i,j∈{0,1} =

1− p p− q

0 q


It is easy to verify that in both cases, the marginal distributions of the couplings equal the

distributions of X1 and Y1. Moreover, in the second case, X ′′1 being greater than Y ′′1 is a

sure event.
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Armed with the definition of coupling, we next briefly discuss its relationship with the

stochastic dominance theorem. When ordering random variables, two sets of information

are important for the ordering: (1) the values that the random variables can take and (2)

the associated probability. If two random variables X � Y , we say that either X has a

higher probability of obtaining larger values than Y , or X has a tendency to be greater

than Y . The first view corresponds to the definition of first-order stochastic dominance.

That is, conditional on values, we compares the two random variables’ associated probabil-

ity. Coupling takes another approach and corresponds to the second view: conditional on

probability and comparing the values. This intuition is best seen from the construction of

the following coupling: if two random variables X and Y with the cumulative distribution

function (cdf) are FX and FY , let (X ′, Y ′) = (F−1
X (U), F−1

Y (U)), where U is uniform in

[0, 1]. By construction, (X ′, Y ′) is a coupling of X and Y . Giving this coupling, we trans-

ferred the problem from comparing the probability that X and Y take less than or equal

to a certain value, to comparing the value of F−1
X (U) and F−1

Y (U) for a certain probability

event (e.g., the probability of U equal to or smaller than a certain value). This is precisely

the intuition behind stochastic dominance theorem.

In other words, when we use the notion of first order stochastic dominance to compare

two random variables, we are anchoring values and comparing probabilities. The stochastic

dominance theorem, on the other hand, allows us to translate the problem to anchoring

probabilities and comparing values. Economic models usually apply functional transforma-

tions on the value side, hence when using the stochastic dominance theorem, we do not need

to alter the anchoring every time when making comparisons. As a result, we can perform

comparative statics for probabilistic models in the same way that we do for deterministic

models.

A.2 Degree Assortativity

The in-degree of a buyer is the number of sellers the buyer matches. Its expected value is

given by equation (3) and increases in bj . We only need to prove that the average number

of connections of sellers that a buyer matches,

N̄ s(j) =

∑
iN

s
i pij∑

i pij
:=
∑
i

N s
i g(i; j),
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decreases in bj . Here N s
i is an increasing function of i and g(i; j) =

pij∑
i pij

gives the relative

probability of i matching j. Note that
∑

i g(i; j) = 1. By the ranking theorem, if we can

prove that g(i; j′) � g(i; j) for any two buyers j > j′, then N̄ s(j′) > N̄ s(j) is immediate.

According to the elementary model,

∂2lnpij
∂si∂bj

=
∂2ln

(
1− (1− si)bj

)
∂si∂bj

=

∂

(
bj(1−si)bj−1

1−(1−si)bj

)
∂∂bj

= −(1− si)bj−1((1− si)bj − bj ln(1− si)− 1)(
1− (1− si)bj

)2
∝ 1− (1− si)bj + ln(1− si)bj < 0.

Because (1− si)bj take values ranging from zero to one, 1− (1− si)bj + ln(1− si)bj is always

negative. Therefore,
pij′

pi′j′
>
pij
pi′j

,

for any two buyers j > j′. This is equivalent to

g(i; j′)

g(i; j)
>
g(i′; j′)

g(i′; j)
.

The last of these inequalities coincides with the definition of the monotonic likelihood ratio

(MLR) property. Therefore, g(i; j′) �MLR g(i; j) for every j′ < j. As MLR is a stronger

ordering concept and it implies FSD (Eeckhoudt and Gollier, 1995), it is immediate that

g(i; j) is negatively FSD ordered in j. We then establish that N̄ s(j) is negatively associated

with bj .

A.3 Robustness: Correlated Assignments

We consider the case in which assignments are not i.i.d events. Without loss of generality,

let one purchase be randomly allocated at a time. Assume that at time one, the probability

of a seller i receiving a purchase from any buyer is still si. At time 1 + ζ, for any ζ > 0, its
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probability of receiving a purchase from buyer j is given by:

sij,ζ+1 =
Ω (sij,ζ , 1(xij,ζ > 0))∑
i′ Ω

(
si′j,ζ , 1(xi′j,ζ > 0)

) , (A1)

where Ω is an increasing function of both s and 1(x > 0). That is, the probability that

a purchase is assigned to i at time 1 + ζ is positively associated with the seller’s general

attractiveness to j and their realized matching outcome in the previous period. The de-

nominator reflects the fact that the unconditional probability needs to be normalized across

all sellers.

Clearly, sij,ζ+1 is a random variable. Naturally, we investigate its stochastic ordering

across all buyers and time periods. We first state the results: sij,ζ is FSD statistically

ordered in ascending order in i, across all buyers j and periods ζ ≥ 0.

We prove the above statement using mathematical induction. Without loss of generality,

consider two sellers with si > si′ . When ζ = 1, the statement is trivially true. Suppose

that when ζ = z and sij,ζ � si′j,ζ . Then, by the proof of proposition 1, xij,ζ � xi′j,ζ , which

in turn implies 1(xij,ζ > 0) � 1(xi′j,ζ > 0). View (sij,ζ , 1(xi′j,ζ > 0)) as the input vector;

applying proposition 1, it is immediate that sij,ζ+1 � si′j,ζ+1. Since both the base case and

the inductive step have been shown, by mathematical induction, the statement sij,ζ � si′j,ζ
holds for every natural number ζ.

Given the above result, the normalized matching probability between i and j over any

period also follows the FSD ordering. Note that whether si is deterministic or FSD ordered

in i does not affect the stochastic ordering of xij . Therefore, all results derived in the paper

remain unchanged when we allows for correlated assignment. Given the proof, it is also

clear that the statement also holds for richer dynamics than shown in equation (A1), as

long as Ω and the stochastic ordering of the input vector are monotone.

The elementary model explains why the persistence of production links increases with

firm size (Huneeus, 2019): In an extreme case where a buyer/seller is large enough, she

almost certainly matches every seller/buyer; thus, the share of survived links equals one,

while the share of newly created links equals zero. Further allowing for path dependence

allocations enables the model to explain why a very small number of firms in the data have a

large number of connections (Lim, 2020), and why the amount traded within a relationship

increases as the firm ages, as does the probability of the relationship surviving (Monarch
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and Schmidt-Eisenlohr, 2020).

A.4 Robustness: Unequal-sized Purchases

Two purchases of unequal size can be viewed as two purchases with the same price but

different quantities (bundled purchase) or two purchases with the same quantity but different

prices. But as long as we are interested in sales-related statistics, this distinction is not

important: we loosely refer to the value of a purchase as purchase size. Without the loss of

generality, we choose the former view for our proofs.

We first consider the case in which the size of each purchase differs across buyers. Denote

by qj the purchases size for buyer j. All extensive-margin results remain unchanged, but

the total sales from i to j now becomes xijqj . When qj is weakly increasing bj , or FSD

generated in ascending order in bj , we will have xijqj � xij′qj′ for bj > bj′ . In words, if

bigger buyers are more likely to make more purchases when matching a seller, all results

derived in the paper remain unchanged.

Proof: When qj is weakly increasing bj , then qj ≥ qj′ for bj ≥ bj′ . By the proof

of proposition 1, (x̂ij , x̂ij′) is the monotone coupling of xij and xij′ , P(x̂ij > x̂ij) = 1.

Therefore, P(x̂ijqj > x̂ijqj′) = 1 ⇒ xijqj � xij′qj′ .

When qj is FSD generated in ascending order in bj , then qj � qj′ for bj ≥ bj′ . By

the stochastic dominance theorem, monotone coupling also exists for qj and qj′ , which we

denote by (q̂j , q̂j′). Then, (x̂ij q̂j , x̂ij′ q̂j′) form a coupling of xijqj and xij′qj′ . Clearly,

P(x̂ij q̂j > x̂ij q̂j′) = 1; therefore, xijqj � xij′qj′ .

Similar proofs can be constructed for the following two cases. When the size of each

purchase differs across sellers, denote by qi the purchases size from seller i. The extensive-

margin results remain unchanged, but the total sales from i to j now becomes xijqi. When qi

is weakly increasing si, or FSD generated in ascending order in si, we will have xijqi � xij′qi′

for si > si′ . In words, if buyers are more likely to buy more when matched with a bigger

seller, all results derived in the paper also remain valid. Alternatively, consider the case in

which the size of each purchase is match specific. Denote it by q(s, b). The total sales from

i to j now becomes xijqij . Again, it is obvious that when q is an increasing function of s

and b or is FSD generated in ascending order in si and qj , we will continue to have that

xijqij � xij′qi′j′ for bi > bi′ and si > si′ .

Adding purchase-size heterogeneity to the model is equivalent to adding one more pa-
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rameter; thus, purchase-size can be considered another variable of interest. The results of

Section 4.4 apply directly.

A.5 Robustness: Conditional on Realizations

In practice, empirical regularities are calculated based on the statistics of realized assign-

ment rather than the fundamental parameters s or b. When examining the relationship

between total sales and out-degree, for example, we group sellers with the same realized

number of connections, compute their average sales and compare it with the same statistic

computed for a different group of sellers with a higher number of realized connections.

Formally, consider two statistics, t̂ and t̃. Without loss of generality we consider seller

statistics, such that both t̂i and t̃i are statistics of realized assignment result and can be

FSD ranked in ascending order of i. Under what conditions can t̂ be FSD ranked in

ascending order of t̃? One sufficient condition is that t̃ on the x-axis follows the monotonic

probability ordering (�MPR) in i.

The proof is the following. Let u(t̂) be an increasing and piecewise differentiable function.

Then, E(u(t̂) | t̃) is given by

E(u(t̂) | t̃) :=
∑
t̂

u(t̂)P[t̂ | t̃] = Ei(E(u(t̂) | t̃, i))

=
∑
i

E(ui(t̂) | t̃)P[i | t̃],

where the second equality is ensured by the law of iterated expectations. The variable

P[i | t̃] = P[t̃i=t̃]∑
i P[t̃i=t̃]

and is the probability that the realized value t̃ comes from seller i.

Consider two sellers with si > si′ . We first prove that E(ui(t̂) | t̃) is an increasing

function of i. For our purpose, it is sufficient to to consider the case when t̂ is a monotone

or order statistic. If t̂ is a monotone statistic, based on the proof of proposition 1, we know

that we can always construct coupling (u′i(t̂), u
′
i(t̂)) with P[u′i(t̂) > u′i(t̂)] = 1 for ui(t̂) and

ui(t̂). If t̂ is an order statistic, we proved its stochastic dominance in the proof of proposition

4. Hence by the stochastic dominance theorem we know the monotone coupling of t̂i and t̂i′

also exist, hence so does that of u(t̂i) and u(t̂i′). Then, by the monotonicity of conditional

expectation, we have that E(ui(t̂) | t̃) > E(ui′(t̂) | t̃).

Now we proceed with the second step of the proof: if t̃i �MPR t̃i′ , then for any two
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values t̃′ > t̃′′. Note that if t̃i �MPR t̃i′ , we have

P[t̃i ≤ t̃′]
P[t̃i′ ≤ t̃′]

>
P[t̃i ≤ t̃′′]
P[t̃i′ ≤ t̃′′]

⇒ P[t̃i ≤ t̃′]
P[t̃i ≤ t̃′′]

>
P[t̃i′ ≤ t̃′]
P[t̃i′ ≤ t̃′′]

,

where the first inequality directly comes from the definition of MPR. The second inequality

in turn implies that P[i | t̃] has the MPR property. Therefore, by the well-known result

that MLR ⇒ MPR ⇒ FSD (e.g., Eeckhoudt and Gollier, 1995), the distribution P[i | t̃′]

FSD the distribution P[i | t̃′′]. Using the ranking theorem, we then have

E[u(t̂) | t̃ = t̃′] > E[u(t̂) | t̃ = t̃′′],

which holds and any increasing and piecewise differentiable function u(t̂). Therefore, apply-

ing (the reverse of) the ranking theorem, we complete the proof that that t̂t̃ can be FSD

ranked in ascending order of t̃.

In the elementary model, the distribution of seller sales is binomial. The distribution of

the number of buyers a seller matches with is Poisson binomial and is asymptotically Poisson

when N is large and s is small. The total purchases of buyers are deterministic; the number

of sellers that a buyer matches with is asymptotically normal (Holst, 1972; Weiss, 1958).

To the best of our knowledge, these four statistics cover all x-axis variables researchers have

used do date. In all cases, the distributions satisfy MPR stochastic orderings.29

A.6 Additional Proofs for Section 6.2

Intensive margin adjustment (the formal proof of
∂2E(log(xij))

∂bj∂si
< 0)

Note that the partial derivative of a binomial distribution Bin(b, s) is given by:

dP(Bin(b, s) = x)

dp
= P(Bin(b, s) = x)(

x

s
− b− x

1− s
),

dP(Bin(b, s) = x)

dn
= P(Bin(b, s) = x)(log(1− s)).

29Poisson and normal distributions have the MLR property, which is sufficient to guarantee MPR order-
ing. The proof of the stochastic ordering of the discrete distributions can be found in, for example, Klenke
and Mattner (2010).
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Hence,

∂2P(Bin(b, s) = x)

∂b∂s
= P(Bin(b, s) = x)(

x

s
− b− x

1− s
)log(1− s)− P(Bin(b, s) = x)

1

1− s

= P(Bin(b, s) = x)

(
(
x

s
− b− x

1− s
)log(1− s)− 1

1− s

)
,

the first term on the RHS, P(Bin(b, s) = x), is always positive. The second term, (xs −
b−x
1−s )log(1 − s) − 1

1−s , is increasing in x and approaches 0 when x → ∞. Therefore, the

whole term is negative, therefore we proved that ∂2P(Bin(b,s)=x)
∂b∂s < 0.

Then we can directly apply this result. Recall that a fall in the exchange rate is equiv-

alent to all buyers at destination market c increasing the number of purchases from bj to

δbj , where δ > 1. And by proposition 3 we can view all buyers from country c as one buyer

with bc =
∑

j∈c bj . Therefore, βp have the same sign as

∑
x

ln(x)(P(Bin(δbc, si) = x))− (Bin(bc, si) = x))

−
∑
x

ln(x)(Bin(δbc, si′) = x)−Bin(bc, si′) = x))) < 0,

where si > si′ . Therefore βp < 0.

Extensive margin adjustment

The probability that a seller matches which each buyer is an independent event with prob-

ability pij . The number of buyers that a seller matches with follows a Poisson binomial

distribution:

P(nsi = κ) =
∑
A∈Bκ

∏
j∈A

pij
∏
j′∈Ac

(1− pij′),

where Bκ is the set of all subsets of κ integers that can be selected from {1, 2, ...,M}. The

set Ac is the complement set of A. Therefore

Ppost(nsi = κ)− Ppost(nsi′ = κ)− P(nsi = κ) + P(nsi′ = κ) =
∑
A∈Bκ

{
∏
j∈A

p
post

ij

∏
j′∈Ac

(1− ppostij′ )

−
∏
j∈A

pij
∏
j′∈Ac

(1− pij′)−
∏
j∈A

p
post

i′j

∏
j′∈Ac

(1− pposti′j′ ) +
∏
j∈A

pi′j
∏
j′∈Ac

(1− pi′j′)},
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where si > si′ , and the superscript post denote the post-shock variables. In this case, the

latter refers the increase in the number of purchases from bj to δbj for all buyers in market

c. As Bκ remains unchanged, to prove
∂2P(nsi=κ)
∂si∂bj

< 0 , it is sufficient to show that

∏
j∈A

ppostij

∏
j′∈Ac

(1− ppostij′ )−
∏
j∈A

pij
∏
j′∈Ac

(1− pij′)

−
∏
j∈A

p
post

i′j

∏
j′∈Ac

(1− pposti′j′ ) +
∏
j∈A

pi′j
∏
j′∈Ac

(1− pi′j′) < 0 (A2)

for all A ∈ Bk. Note that

∂(
ppostij

pij
)

∂si
∝
∂ppostij

∂si
− ∂pij

∂si

= δbj(1− si)δbj−1 − bj(1− si)bj−1 < 0,

and

∂(
1−ppostij

1−pij )

∂si
∝ ∂pij

∂si
−
∂ppostij

∂si
+
∂ppostij

∂si
pij −

∂pij
∂si

ppostij

= bj(1− si)bj+δbj−2 − δbj(1− si)bj+δbj−2 < 0.

Therefore,

∏
j∈A p

post
ij

∏
j′∈Ac (1−ppost

ij′ )∏
j∈A pij

∏
j′∈Ac (1−pij′ )

decreases in si, which guarantees the equality in (A2).

The remainder of the proof is simply identical to the proof of
∂2E(log(xij))

∂bj∂si
< 0.
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Appendix B Empirical Appendix

B.1 The Norwegian trade data

The Norwegian trade data used in the paper is transaction-level customs data, which has

information on the identity of the seller and buyer of each trade transaction involving a

Norwegian firm. Without loss of generality, we use the data from year 2005 and focus on

Norwegian exporters and their international buyers (unless otherwise mentioned). The data

include all Norway’s non-oil commodity exports, which account for 18% of the Norwegian

GDP of the corresponding industry. The firm and transaction-level variables and character-

istics of this dataset are similar to those of other countries and other databases, as detailed

in Bernard et al. (2018a).

The firm-to-firm transaction-level data is the most disaggregated data available and is

the basis for calculating more aggregate statistics such as annual firm sales to individual

buyers or country level trade volumes. A striking feature of the transaction-level data is

its discreteness. For buyers and sellers with positive transactions, the mean number of

transactions is 2.1, and the median is 1. More than 68% of connected buyers and sellers

traded only once, and more than 90% of connected buyers and sellers trade fewer than five

times in a year.

B.2 US Manufacturing Exporter Share

Table A1: Share of Manufacturing Exporters in the US: US Firms as Bins Simulations

US Customs Reporting Cutoff

2000 USD (DATA) 36000 USD (AK)

Bins are Firms Countries RoW as one bin Firms Countries RoW as one bin

(1) (2) (3) (4) (5) (6)

Ball Size = 100USD 11.18 % 79.49 % 90.87 % 0.43 % 38.88 % 60.18 %

Ball Size = Cutoff Size 92.66 % 92.63 % 92.63 % 66.53 % 66.61 % 66.61 %

Notes: Each number in this table is the share of direct exporters among US manufacturing firms calculated from a separate

balls and bins simulation of a random allocation model. The simulation has buyers (firms, countries, or ROW/US), throwing

balls and US manufacturing firms as bins. Simulations vary in ball (transaction) size, the import reporting cutoff, or the

aggregation level of the buyer.
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Table A1 shows the predicted share of direct exporters in US manufacturing firms when

exporters are bins, and buyers are throwing balls. Three levels of aggregation for buyers

are represented: firms (domestic and foreign buyers), countries (US, Canada, China etc),

and two buyers, US and non-US. The results are very similar to those reported in Table 1

where selling firms are throwing balls and buyers are given by bins.

B.3 Candidate Models and the Computation

ER model. In the Erdös–Rényi model (ER), every pair of buyer-sellers is independently

linked with probability p. Recall that M is the number of buyers and N is the number of

sellers. Let L be the total number of links observed in the data. Therefore the probability

that the ER model generates network G is LER(G) = pL(1 − p)MN−L. In this model, the

optimal probability p that maximize LER(G) can be solved analytically and is given by

p̂ = L
MN . The maximized likelihood is then given by LER(G) = p̂L(1− p̂)MN−L.

FRG model. The FRG model takes the total number of links of a firm as given and

randomize links between buyers and sellers. Compared to the elementary model, it is the

links rather than transactions that are randomized. Recall that the realized number of links

of seller is denoted by nsi and buyer by nbj . As in Bezáková et al. (2006), for a network

without multiple edges (i.e., more than one link between a pair), the probability of any

particular matching is given by LFRG(G) =
∏
i n
s
i !
∏
j n

b
j !

L! . Note that when we interested

in the likelihood of the model conditional on the observed firm-degrees, there are no free

parameters need to be estimated. The maximized likelihood is then directly given by

LFRG(G).

Beckerian model. For the Beckerian model, the predicted matching is generated as in

Section 7.2.1: we take the total number of connections of each buyer and seller as given from

the data. We start from the largest buyer, assign its largest connection (in terms of total

sales) to the most-connected seller, second-largest connection to the second-most-connected

seller, and so forth. After completing assigning the links of the largest buyer, we move to

the second-largest buyer and repeat the same process. In every round, we assign the buyer

to the most connected seller that still has slots and with which the buyer has not yet been

connected. By doing this, the model gives predicted probability either equal to 1 or 0. As

ln(pij) is undefined when pij = 0, we set pij = 1 − 0.116 if the model predicts a match

between i and j and pij = 0.116 otherwise. This treatment is equivalent to allowing for
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Model
Prediction

Data

P (pij = 0, Dij = 0) = 1− ε

Not Match

P (pij = 0, Dij = 1) = ε
Match

Not Match

Data

P (pij = 1, Dij = 0) = ε

Not Match

P (pij = 1, Dij = 1) = 1− ε
Match

Match

Figure A6: The error structure

small prediction errors (see the later discussion on hierarchy model with optimal errors).

The probability that the model generates the observed network structure is then given by

LBeckerian(G) =
∏
i

∏
j p

Dij
ij (1− pij)1−Dij , where Dij denote the matching outcome between

i and j observed in the data.

Beckerian model with prediction errors. Typically, when we conduct quantitative

analysis, we always allow for some prediction errors as we do not expect a simple, stylized

model to fit the data perfectly. Viewing through the lens of model selection, this practice,

however, needs to be interpreted with caution. The error term also has a structure and

generates predictions. To illustrate, consider a general model y = T (x). The likelihood of

y = f(T (x), ε) is not an evaluation of the credibility of the model T (x), but a combination

of T (x) and ε.30 This is also the idea behind model averaging, i.e., y = f(T (x), ε) should

be viewed as an averaging of two models, y = T (x) and y = ε.

Nevertheless, evaluating the likelihood of a hierarchy models with errors is still a valuable

task. Firstly, one may believe that y = f(T (x), ε) is the “real” description of the data.

Correspondingly, it can also be viewed as a candidate model and be evaluated under model

selection. Secondly, the estimated results also inform us to which extent the data can be

explained by T (x). If the estimated likelihood improves a lot by introducing ε and the

estimated ε is very large, it indicates a limited ability of T (x) in explaining data, even when

T (x) gives the highest likelihood among all candidate models.

Following the above discussion, we consider a simple error structure: there is ε probabil-

ity that the Beckerian matching model makes the wrong prediction for a buyer-seller pair.

That is, we set pij = 1− ε if the model predicts a match between i and j and pij = ε oth-

30The often used form y = T (x) + ε is a special case of y = f(T (x), ε).
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erwise. We then optimally choose ε to maximize LBeckerian(G) =
∏
i

∏
j p

Dij
ij (1− pij)1−Dij .

We summarize the error structure in Figure A6.

Elementary model. We consider three variations of the elementary model: the base-

line case as we presented throughout the paper, an extension with balls being a function of

bj , and the case when transaction data is not observable. We describe their calculation in

turn. As before, the probability that a model generates the observed network structure is

then given by LE(G) =
∏
i

∏
j p

Dij
ij (1 − pij)1−Dij , where Dij = 1 if i and j are matched in

the data, zero otherwise. The value pij is the matching probability between i and j given

by the model.

In the baseline case, we let pij = 1 − (1 − si)bj and compute LE(G) directly. In the

extension, we let pij = 1 − (1 − si)βbj+α, and we optimally choose β and α to maximize

LE(G). We expect β to be smaller than one, since we showed before that matches in

reality tend to be path dependent. In the last case, we set si as the export share of firm

i. We assume the number of balls, bj , follows bj = βdj + α. In case (1) we let d equal

the total number of connections of the buyer, and in case (2) d equals the buyer’s total

purchase divided by the minimum order value $100. Note that when β = 1 and α = 0, they

corresponds to two extreme cases (1) each connection implies one transaction, and (2) each

minimum-value order implies one transaction, respectively. We compute si and bj under

the associated assumption, then let pij = 1 − (1 − si)βbj+α and optimally choose β and α

to maximize LE(G).
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